
OpenMM

 Users Manual and

Theory Guide
 Release 4.0

January 5, 2012
 Website: simtk.org/home/openmm

OpenMM Users Manual and Theory Guide

Authors

Kyle Beauchamp

Christopher Bruns

Peter Eastman

Mark Friedrichs

Joy P. Ku

Tom Markland

Vijay Pande

Randy Radmer

Michael Sherman

Copyright and Permission Notice

Portions copyright (c) 2008-2012 Stanford University and the Authors
Contributors: Kyle Beauchamp, Christopher Bruns, Peter Eastman, Mark Friedrichs, Joy P. Ku, Vijay Pande,
Randy Radmer, Michael Sherman, Tom Markland

Permission is hereby granted, free of charge, to any person obtaining a copy of this document (the "Document"),
to deal in the Document without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Document, and to permit persons to whom the
Document is furnished to do so, subject to the following conditions:

This copyright and permission notice shall be included in all copies or substantial portions of the Document.

THE DOCUMENT IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS,
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE DOCUMENT OR THE USE OR OTHER DEALINGS IN THE DOCUMENT.

v

Acknowledgments

OpenMM software and all related activities, such as this manual, are funded by the Simbios

National Center for Biomedical Computing through the National Institutes of Health

Roadmap for Medical Research, Grant U54 GM072970. Information on the National

Centers can be found at http://nihroadmap.nih.gov/bioinformatics.

Table of Contents

PART I: USERS MANUAL

1	 INTRODUCTION .. 12	

1.1	 What Is OpenMM?...12	
1.2	 OpenMM Version 4.0 ..12	
1.3	 Using this Manual.. 13	

1.3.1	 Organization of this document.. 13	
1.3.2	 How to get started ... 13	

1.4	 Online Resources ...14	
1.5	 Referencing OpenMM..14	
1.6	 Acknowledgements and License..14	

2	 OPENMM DESIGN AND API OVERVIEW ... 16	

2.1	 Design Principles ...16	
2.2	 Choice of Language .. 17	
2.3	 Architectural Overview ..18	
2.4	 The OpenMM Public API...19	
2.5	 The OpenMM Low Level API ..21	
2.6	 Platforms... 23	

3	 INSTRUCTIONS FOR PRE-COMPILED OPENMM BINARIES AND GPU

SOFTWARE.. 25	

3.1	 Prerequisites ... 25	
3.2	 Quick Instructions .. 26	
3.3	 Installing OpenMM..27	

3.3.1	 Windows ..27	
3.3.2	 Linux ... 28	
3.3.3	 Mac OS X .. 28	

3.4	 Installing GPU Software ... 29	
3.4.1	 Installing CUDA for NVIDIA GPUs ... 29	
3.4.2	 Installing OpenCL ...37	

4	 COMPILING OPENMM FROM SOURCE CODE...39	

vii

4.1	 Prerequisites.. 39	
4.1.1	 Get a C++ compiler ... 39	
4.1.2	 Install CMake ..40	
4.1.3	 Get the OpenMM source code...40	
4.1.4	 Other Required Software ...40	

4.2	 Step 1: Configure with CMake..41	
4.2.1	 Build and source directories..41	
4.2.2	 Starting CMake .. 42	

4.3	 Step 2: Generate Build Files with CMake ... 43	
4.3.1	 Windows.. 43	
4.3.2	 Mac and Linux.. 43	

4.4	 Step 3: Build OpenMM ... 44	
4.4.1	 Windows.. 44	
4.4.2	 Mac and Linux.. 44	

4.5	 Step 4: Test your build .. 44	
4.5.1	 Windows.. 44	
4.5.2	 Mac and Linux .. 44	

4.6	 Step 5: Install OpenMM .. 45	
4.6.1	 Windows.. 45	
4.6.2	 Mac and Linux.. 45	

4.7	 Step 6: Set Your Library Path ... 46	

5	 OPENMM TUTORIALS ... 47	

5.1	 Example Files Overview .. 47	
5.2	 Running Example Files ...48	

5.2.1	 Visual Studio ...48	
5.2.2	 Mac OS X/Linux ..51	

5.3	 HelloArgon Program ... 53	
5.3.1	 Including OpenMM-defined functions ... 53	
5.3.2	 Running a program on GPU platforms .. 53	
5.3.3	 Running a simulation using the OpenMM public API .. 54	
5.3.4	 Error handling for OpenMM ... 57	
5.3.5	 Writing out PDB files.. 57	
5.3.6	 HelloArgon output.. 58	

5.4	 HelloSodiumChloride Program .. 58	
5.4.1	 Simple molecular dynamics system... 59	
5.4.2	 Interface routines ...60	

viii

5.5	 HelloEthane Program ... 68	

6	 PLATFORM-SPECIFIC PROPERTIES ... 72	

6.1	 OpenCL Platform ...72	
6.2	 CUDA Platform ..73	

7	 USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER

THAN C++.. 74	

7.1	 C API ..75	
7.1.1	 Mechanics of using the C API...75	
7.1.2	 Mapping from the C++ API to the C API ..76	
7.1.3	 Exceptions ..77	
7.1.4	 OpenMM_Vec3 helper type...77	
7.1.5	 Array helper types .. 78	

7.2	 Fortran 95 API .. 80	
7.2.1	 Mechanics of using the Fortran API .. 80	
7.2.2	 Mapping from the C++ API to the Fortran API...81	
7.2.3	 OpenMM_Vec3 helper type ... 82	
7.2.4	 Array helper types ... 82	

7.3	 Python API .. 85	
7.3.1	 Installing the Python API ... 85	
7.3.2	 Mapping from the C++ API to the Python API ... 87	
7.3.3	 Mechanics of using the Python API ... 88	
7.3.4	 Units and dimensional analysis .. 89	

8	 EXAMPLES OF OPENMM INTEGRATION..96	

8.1	 GROMACS .. 96	
8.2	 PyMD..97	

8.2.1	 OpenMM integration ... 98	

9	 TESTING AND VALIDATION OF OPENMM...101	

9.1	 Description of Tests ...102	
9.1.1	 Unit tests...102	
9.1.2	 System tests..102	
9.1.3	 Direct comparisons between GROMACS and OpenMM forces...............................103	

9.2	 Test Results ..104	
9.2.1	 Unit tests ..104	

ix

9.2.2	 System tests .. 104	
9.2.3	 GROMACS-Reference platform differences .. 109	

9.3	 Validation Software... 109	

10	 AMOEBA PLUGIN ..113	

10.1	 OpenMM AMOEBA Supported Forces and Options... 113	
10.1.1	 Supported Forces and Options.. 113	
10.1.2	 Supported Integrators... 115	

10.2	 TINKER-OpenMM ... 116	
10.2.1	 Building TINKER-OpenMM (Linux)... 116	
10.2.2	 Using TINKER-OpenMM .. 117	
10.2.3	 Implementation of TINKER-OpenMM ... 121	

10.3	 OpenMM AMOEBA Validation... 123	

11	 FREE ENERGY PLUGIN .. 125	

12	 RING POLYMER MOLECULAR DYNAMICS (RPMD) PLUGIN 129	

13	 THE THEORY BEHIND OPENMM: AN INTRODUCTION........................ 132	

13.1	 Overview.. 132	
13.2	 Units ...133	

14	 STANDARD FORCES... 134	

14.1	 HarmonicBondForce... 134	
14.2	 HarmonicAngleForce .. 134	
14.3	 PeriodicTorsionForce...135	
14.4	 RBTorsionForce ...135	
14.5	 CMAPTorsionForce..135	
14.6	 NonbondedForce... 136	

14.6.1	 Lennard-Jones Interaction .. 136	
14.6.2	 Coulomb Interaction Without Cutoff ... 138	
14.6.3	 Coulomb Interaction With Cutoff... 138	
14.6.4	 Coulomb Interaction With Ewald Summation.. 138	
14.6.5	 Coulomb Interaction With Particle Mesh Ewald .. 140	

14.7	 GBSAOBCForce.. 141	
14.7.1	 Generalized Born Term ... 141	
14.7.2	 Surface Area Term.. 142	

14.8	 GBVIForce ... 142	

x

14.9	 AndersenThermostat ...144	
14.10	 MonteCarloBarostat .. 145	
14.11	 CMMotionRemover ...146	

15	 CUSTOM FORCES ... 147	

15.1	 CustomBondForce ... 147	
15.2	 CustomAngleForce...148	
15.3	 CustomTorsionForce ...148	
15.4	 CustomNonbondedForce...149	
15.5	 CustomExternalForce ..150	
15.6	 CustomGBForce ...150	
15.7	 CustomHbondForce... 152	
15.8	 Writing Custom Expressions ... 153	

16	 INTEGRATORS ..155	

16.1	 VerletIntegrator ... 155	
16.2	 LangevinIntegator.. 155	
16.3	 BrownianIntegrator ... 156	
16.4	 VariableVerletIntegrator ... 157	
16.5	 VariableLangevinIntegrator ..158	

17	 OTHER TOOLS ... 159	

17.1	 LocalEnergyMinimizer .. 159	
17.2	 XMLSerializer .. 159	

18	 BIBLIOGRAPHY ... 160	

Part I

Users Manual

1 Introduction

1.1 What Is OpenMM?

OpenMM is an API for executing molecular dynamics simulations on high performance

computer architectures. Examples of the sorts of architectures it is intended to support

include:

• Highly parallel systems with large numbers of CPU cores

• Graphics processing units (GPUs)

• Clusters of computers communicating over a network

OpenMM consists of two parts. First, there is a set of libraries for performing many types of

computations needed for molecular simulations: force evaluation, numerical integration,

energy minimization, etc. These libraries provide an interface targeted at developers of

simulation software, allowing them to easily add simulation features to their programs.

Second, there is an “application layer”, a set of Python libraries providing a high level

interface for running simulations. This layer is targeted at computational biologists or other

people who want to run simulations, and who may or may not be programmers.

This guide describes the computational libraries. If you are only interested in running

simulations, not in writing software, much of it will not be relevant to you. The application

layer is described in a separate OpenMM Application Guide.

1.2 OpenMM Version 4.0

Most parts of the current release are stable and suitable for production use. There are a few

exceptions to that. The GBVIForce class should be considered beta quality, since it has not

yet been extensively tested. Also, the CustomGBForce and CustomHbondForce classes are

INTRODUCTION 13

still under development. They work correctly, but they have only been implemented on the

Reference and OpenCL Platforms, and their APIs might change in the future.

OpenMM is being actively developed, and although we expect the API to be relatively stable

for the foreseeable future, it is possible that some small changes will occur. Users should

expect that programs written to use this release may require modifications to work with

future versions.

We also are open to other possible changes. All comments and suggestions for ways to make

OpenMM a better, more useful toolkit are welcome. Email us at openmm-team@simtk.org.

1.3 Using this Manual

1.3.1 Organization of this document

This manual is divided into two distinct sections:

• Users Manual – The goal of this section is to present a high-level overview of

OpenMM and provide instructions for using the OpenMM API and creating plug-ins

to add functionality to OpenMM.

• Theory Manual – This section describes the mathematical theory behind the

functions available in OpenMM. As appropriate, specific tips are given on how to use

the function to produce accurate, fast results.

1.3.2 How to get started

We have provided a number of files that make it easy to get started with OpenMM. Pre-

compiled binaries are provided for quickly getting OpenMM onto your computer (See

Chapter 3 for set-up instructions). We recommend that you then compile and run some of

the tutorial examples, described in Chapter 5. These highlight key functions within

OpenMM and teach you the basic programming concepts for using OpenMM. Once you are

ready to begin integrating OpenMM into a specific software package, read through Chapter 8

to see how other software developers have done this.

14 INTRODUCTION

1.4 Online Resources

You can find more documentation and other material at our website

http://simtk.org/home/openmm. Among other things there is a discussion forum, several

mailing lists with archives and tutorial slides and videos.

1.5 Referencing OpenMM

Any work that uses OpenMM should cite the following publication:

M. S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. LeGrand, A. L. Beberg, D. L.

Ensign, C. M. Bruns, V. S. Pande. “Accelerating Molecular Dynamic Simulation on Graphics

Processing Units.” J. Comp. Chem., 30(6):864-872 (2009).

We depend on academic research grants to fund the OpenMM development efforts; citations

of our publication will help demonstrate the value of OpenMM.

1.6 Acknowledgements and License

OpenMM was developed by Simbios, the NIH National Center for Physics-Based Simulation

of Biological Structures at Stanford, funded under the NIH Roadmap for Medical Research,

grant U54 GM072970. See https://simtk.org.

Two different licenses are used for different parts of OpenMM. The public API, the low level

API, and the reference platform are all distributed under the MIT license. This is a very

permissive license which allows them to be used in almost any way, requiring only that you

retain the copyright notice and disclaimer when distributing them.

The CUDA and OpenCL platforms are distributed under the GNU Lesser General Public

License (LGPL). This also allows you to use, modify, and distribute them in any way you

want, but it requires you to also distribute the source code for your modifications. This

restriction applies only to modifications to OpenMM itself; you need not distribute the

source code to applications that use it.

INTRODUCTION 15

OpenMM also uses several pieces of code that were written by other people and are covered

by other licenses. All of these licenses are similar in their terms to the MIT license, and do

not significantly restrict how OpenMM can be used.

All of these licenses may be found in the “licenses” directory included with OpenMM.

2 OpenMM Design and API

Overview

2.1 Design Principles

The design of the OpenMM API is guided by the following principles.

1. The API must support efficient implementations on a variety of architectures.

The most important consequence of this goal is that the API cannot provide direct access to

state information (particle positions, velocities, etc.) at all times. On some architectures,

accessing this information is expensive. With a GPU, for example, it will be stored in video

memory, and must be transferred to main memory before outside code can access it. On a

distributed architecture, it might not even be present on the local computer. OpenMM

therefore only allows state information to be accessed in bulk, with the understanding that

doing so may be a slow operation.

2. The API should be easy to understand and easy to use.

This seems obvious, but it is worth stating as an explicit goal. We are creating OpenMM

with the hope that many other people will use it. To achieve that goal, it should be possible

for someone to learn it without an enormous amount of effort. An equally important aspect

of being “easy to use” is being easy to use correctly. A well designed API should minimize

the opportunities for a programmer to make mistakes. For both of these reasons, clarity and

simplicity are essential.

OPENMM DESIGN AND API OVERVIEW 17

3. It should be modular and extensible.

We cannot hope to provide every feature any user will ever want. For that reason, it is

important that OpenMM be easy to extend. If a user wants to add a new molecular force

field, a new thermostat algorithm, or a new hardware platform, the API should make that

easy to do.

4. The API should be hardware independent.

Computer architectures are changing rapidly, and it is impossible to predict what hardware

platforms might be important to support in the future. One of the goals of OpenMM is to

separate the API from the hardware. The developers of a simulation application should be

able to write their code once, and have it automatically take advantage of any architecture

that OpenMM supports, even architectures that do not yet exist when they write it.

2.2 Choice of Language

Molecular modeling and simulation tools are written in a variety of languages: C, C++,

Fortran, Python, TCL, etc. It is important that any of these tools be able to use OpenMM.

There are two possible approaches to achieving this goal.

One option is to provide a separate version of the API for each language. These could be

created by hand, or generated automatically with a wrapper generator such as SWIG. This

would require the API to use only “lowest common denominator” features that can be

reasonably supported in all languages. For example, an object oriented API would not be an

option, since it could not be cleanly expressed in C or Fortran.

The other option is to provide a single version of the API written in a single language. This

would permit a cleaner, simpler API, but also restrict the languages it could be directly called

from. For example, a C++ API could not be invoked directly from Fortran or Python.

We have chosen to use a hybrid of these two approaches. OpenMM is based on an object

oriented C++ API. This is the primary way to invoke OpenMM, and is the only API that fully

18 OPENMM DESIGN AND API OVERVIEW

exposes all features of the library. We believe this will ultimately produce the best, easiest to

use API and create the least work for developers who use it. It does require that any code

which directly invokes this API must itself be written in C++, but this should not be a

significant burden. Regardless of what language we had chosen, developers would need to

write a thin layer for translating between their own application’s data model and OpenMM.

That layer is the only part which needs to be written in C++.

In addition, we have created wrapper APIs that allow OpenMM to be invoked from other

languages. The current release includes wrappers for C, Fortran, and Python. These

wrappers support as many features as reasonably possible given the constraints of the

particular languages, but some features cannot be fully supported. In particular, writing

plug-ins to extend the OpenMM API can only be done in C++.

We are also aware that some features of C++ can easily lead to compatibility and portability

problems, and we have tried to avoid those features. In particular, we make minimal use of

templates and avoid multiple inheritance altogether. Our goal is to eventually support

OpenMM on all major compilers and operating systems.

2.3 Architectural Overview

OpenMM is based on a layered architecture, as shown in the following diagram:

Figure	 2.1:	 	 OpenMM	 architecture	

OPENMM DESIGN AND API OVERVIEW 19

At the highest level is the OpenMM public API. This is the API developers program against

when using OpenMM within their own applications. It is designed to be simple, easy to

understand, and completely platform independent. This is the only layer that many users

will ever need to look at.

The public API is implemented by a layer of platform independent code. It serves as the

interface to the lower level, platform specific code. Most users will never need to look at it.

The next level down is the OpenMM Low Level API (OLLA). This acts as an abstraction

layer to hide the details of each hardware platform. It consists of a set of C++ interfaces that

each platform must implement. Users who want to extend OpenMM will need to write

classes at the OLLA level. Note the different roles played by the public API and the low level

API: the public API defines an interface for users to invoke in their own code, while OLLA

defines an interface that users must implement, and that is invoked by the OpenMM

implementation layer.

At the lowest level is hardware specific code that actually performs computations. This code

may be written in any language and use any technologies that are appropriate. For example,

code for GPUs will be written in stream processing languages such as OpenCL or CUDA,

code written to run on clusters will use MPI or other distributed computing tools, code

written for multicore processors will use threading tools such as Pthreads or OpenMP, etc.

OpenMM sets no restrictions on how these computational kernels are written. As long as

they are wrapped in the appropriate OLLA interfaces, OpenMM can use them.

2.4 The OpenMM Public API

The public API is based on a small number of classes:

System: A System specifies generic properties of the system to be simulated: the number of

particles it contains, the mass of each one, the size of the periodic box, etc. The interactions

between the particles are specified through a set of Force objects (see below) that are added

to the System. Force field specific parameters, such as particle charges, are not direct

20 OPENMM DESIGN AND API OVERVIEW

properties of the System. They are properties of the Force objects contained within the

System.

Force: The Force objects added to a System define the behavior of the particles. Force is an

abstract class; subclasses implement specific behaviors. The Force class is actually slightly

more general than its name suggests. A Force can, indeed, apply forces to particles, but it

can also directly modify particle positions and velocities in arbitrary ways. Some

thermostats and barostats, for example, can be implemented as Force classes. Examples of

Force subclasses in OpenMM 4.0 include HarmonicBondForce, NonbondedForce, and

MonteCarloBarostat.

Context: This stores all of the state information for a simulation: particle positions and

velocities, as well as arbitrary parameters defined by the Forces in the System. It is possible

to create multiple Contexts for a single System, and thus have multiple simulations of that

System in progress at the same time.

Integrator: This implements an algorithm for advancing the simulation through time. It is

an abstract class; subclasses implement specific algorithms. Examples of Integrator

subclasses in OpenMM 4.0 include LangevinIntegrator, VerletIntegrator, and

BrownianIntegrator.

State: A State stores a snapshot of the simulation at a particular point in time. It is created

by calling a method on a Context. As discussed earlier, this is a potentially expensive

operation. This is the only way to query the values of state variables, such as particle

positions and velocities; Context does not provide methods for accessing them directly.

Here is an example of what the source code to create a System and run a simulation might

look like:

System system;

for (int i = 0; i < numParticles; ++i)

 system.addParticle(particle[i].mass);

HarmonicBondForce* bonds = new HarmonicBondForce();

system.addForce(bonds);

OPENMM DESIGN AND API OVERVIEW 21

for (int i = 0; i < numBonds; ++i)

 bonds->addBond(bond[i].particle1, bond[i].particle2,

 bond[i].length, bond[i].k);

HarmonicAngleForce* angles = new HarmonicAngleForce();

system.addForce(angles);

for (int i = 0; i < numAngles; ++i)

 angles->addAngle(angle[i].particle1, angle[i].particle2,

 angle[i].particle3, angle[i].angle, angle[i].k);

// ...create and initialize other force field terms in the same way

LangevinIntegrator integrator(temperature, friction, stepSize);

Context context(system, integrator);

context.setPositions(initialPositions);

context.setVelocities(initialVelocities);

integrator.step(10000);

We create a System, add various Forces to it, and set parameters on both the System and the

Forces. We then create a LangevinIntegrator, initialize a Context in which to run a

simulation, and instruct the Integrator to advance the simulation for 10,000 time steps.

2.5 The OpenMM Low Level API

The OpenMM Low Level API (OLLA) defines a set of interfaces that users must implement

in their own code if they want to extend OpenMM, such as to create a new Force subclass or

support a new hardware platform. It is based on the concept of “kernels” that define

particular computations to be performed.

More specifically, there is an abstract class called KernelImpl. Instances of this class (or

rather, of its subclasses) are created by KernelFactory objects. These classes provide the

concrete implementations of kernels for a particular platform. For example, to perform

calculations on a GPU, one would create one or more KernelImpl subclasses that

implemented the computations with GPU kernels, and one or more KernelFactory

subclasses to instantiate the KernelImpl objects.

All of these objects are encapsulated in a single object that extends Platform. KernelFactory

objects are registered with the Platform to be used for creating specific named kernels. The

22 OPENMM DESIGN AND API OVERVIEW

choice of what implementation to use (a GPU implementation, a multithreaded CPU

implementation, an MPI-based distributed implementation, etc.) consists entirely of

choosing what Platform to use.

As discussed so far, the low level API is not in any way specific to molecular simulation; it is

a fairly generic computational API. In addition to defining the generic classes, OpenMM

also defines abstract subclasses of KernelImpl corresponding to specific calculations. For

example, there is a class called CalcHarmonicBondForceKernel to implement

HarmonicBondForce and a class called IntegrateLangevinStepKernel to implement

LangevinIntegrator. It is these classes for which each Platform must provide a concrete

subclass.

This architecture is designed to allow easy extensibility. To support a new hardware

platform, for example, you create concrete subclasses of all the abstract kernel classes, then

create appropriate factories and a Platform subclass to bind everything together. Any

program that uses OpenMM can then use your implementation simply by specifying your

Platform subclass as the platform to use.

Alternatively, you might want to create a new Force subclass to implement a new type of

interaction. To do this, define an abstract KernelImpl subclass corresponding to the new

force, then write the Force class to use it. Any Platform can support the new Force by

providing a concrete implementation of your KernelImpl subclass. Furthermore, you can

easily provide that implementation yourself, even for existing Platforms created by other

people. Simply create a new KernelFactory subclass for your kernel and register it with the

Platform object. The goal is to have a completely modular system. Each module, which

might be distributed as an independent library, can either add new features to existing

platforms or support existing features on new platforms.

In fact, there is nothing “special” about the kernel classes defined by OpenMM. They are

simply KernelImpl subclasses that happen to be used by Forces and Integrators that happen

to be bundled with OpenMM. They are treated exactly like any other KernelImpl, including

the ones you define yourself.

OPENMM DESIGN AND API OVERVIEW 23

It is important to understand that OLLA defines an interface, not an implementation. It

would be easy to assume a one-to-one correspondence between KernelImpl objects and the

pieces of code that actually perform calculations, but that need not be the case. For a GPU

implementation, for example, a single KernelImpl might invoke several GPU kernels.

Alternatively, a single GPU kernel might perform the calculations of several KernelImpl

subclasses.

2.6 Platforms

This release of OpenMM contains the following Platform subclasses:

ReferencePlatform. This is designed to serve as reference code for writing other

platforms. It is written with simplicity and clarity in mind, not performance.

CudaPlatform. This platform is implemented using the CUDA language, and performs

calculations on Nvidia GPUs.

OpenCLPlatform. This platform is implemented using the OpenCL language, and

performs calculations on a variety of types of GPUs and CPUs.

The choice of which platform to use for a simulation depends on various factors:

1. The Reference platform is much slower than the others, and therefore is rarely used

for production simulations. It does have one advantage, however: it is the only

platform that does force and energy computations in double precision. For most

applications, single precision is entirely sufficient, but for the rare situations when

higher accuracy is required, the Reference platform is the only option.

2. The CUDA platform can only be used with NVIDIA GPUs. For using an AMD GPU or

for running on a CPU, use the OpenCL platform.

3. When running on an NVIDIA GPU, many factors affect which platform is faster,

CUDA or OpenCL. Examples include the model of GPU (OpenCL tends to be faster

on recent GPUs, while CUDA tends to be faster on older ones), whether the

simulation includes water (OpenCL tends to be faster for explicit solvent, while

CUDA tends to be faster for implicit solvent), whether any custom forces are used

24 OPENMM DESIGN AND API OVERVIEW

(these are much faster with OpenCL than with CUDA), etc. You should try both

platforms and see which is faster for your simulation.

4. The OpenCL platform uses memory more efficiently than the CUDA platform when

simulating large systems. For this reason, the OpenCL platform can simulate larger

systems than the CUDA platform can.

5. CustomGBForce and CustomHbondForce only work with the OpenCL platform, not

with the CUDA platform.

6. The AMOEBA force field only works with the CUDA platform, not with the OpenCL

platform.

7. GBVIForce only works with the CUDA platform, not with the OpenCL platform.

3 Instructions for Pre-

Compiled OpenMM

Binaries and GPU Software

OpenMM provides pre-compiled binaries for a number of platforms:

• Windows (Visual Studio 9)

• Linux (32 and 64 bit)

• Mac OS X (10.6 or later; it may also work on 10.5, but it has not been tested and the

OpenCL platform will not be available)

Source code is also available. Instructions for compiling OpenMM from source code are

provided in Chapter 4.

3.1 Prerequisites

To run OpenMM and the provided test examples, you will need:

• A C++ compiler

o gcc on Mac/Linux - We have tested with various gcc versions between 4.0 and

4.4. If you are using Mac OS X, gcc is included with Apple’s Xcode developer

tools.

o Visual Studio 9 on Windows. (This is not required if you only plan to use

Python.)

• Python 2.6 or 2.7.

26 INSTRUCTIONS FOR PRE-COMPILED OPENMM BINARIES AND GPU SOFTWARE

o On Windows and Linux, be sure to install a 32-bit Python binary, even if you

have a 64-bit OS. OpenMM is compiled in 32-bit mode and will only work

with a 32-bit Python.

• OpenMM pre-compiled binaries for your platform (see Section 3.3 below)

To take advantage of the GPU-accelerated molecular dynamics, you must have a supported

GPU. You will also need to have the special programming language(s) used for your

particular GPU (see Section 3.4).

3.2 Quick Instructions

Below is a quick-start guide to getting OpenMM and running the provided test examples.

More details follow in the subsequent sections. There also is an online troubleshooting

guide that describes common problems and how to fix them

(http://wiki.simtk.org/openmm/FAQApp).

1. Download OpenMM binaries from http://simtk.org/home/openmm. Extract the

files from the zip archive.

2. Install OpenMM.

a. On Windows, extract the files and save them to C:\Program Files\OpenMM.

(On 64 bit Windows, use C:\Program Files (x86)\OpenMM). Double click

the Python API Installer for your version of Python (2.6 or 2.7) to install the

Python components. (If you are running on Vista or Windows 7, a “Program

Compatibility Assistant” window may appear with the warning, “This

program might not have installed correctly.” This is just Microsoft trying to

scare you. Click “This program installed correctly” and ignore it.)

b. On Mac or Linux, execute the install.sh script (e.g. “sudo ./install.sh”).

It will prompt you to select an install location and to locate your Python

executable.

3. Set path variables for the lib directory within the openmm or OpenMM folder – See

Section 3.3 for more detailed instructions.

INSTRUCTIONS FOR PRE-COMPILED OPENMM BINARIES AND GPU SOFTWARE 27

4. Install GPU software, if applicable – See Section 3.4 for more detailed instructions.

5. (Optional) Build and run the HelloArgon program to test the installation – see

Section 5.1 for more detailed instructions.

o On Linux/Mac OS X, type make. Then, run the HelloArgon program.

o On Windows, double-click on HelloArgon.sln, located in the VisualStudio

folder. Make sure the “Solution Configuration” in Visual Studio is set to

"Release"; due to incompatibilities among Visual Studio versions, we do not

provide pre-compiled debug binaries. Build the program (Select Debug ->

Start Without Debugging).

3.3 Installing OpenMM

The pre-compiled OpenMM libraries can be obtained from

http://simtk.org/home/openmm. Click on “Downloads.” Under the list of “Pre-compiled

binaries,” select the file that corresponds to your platform.

3.3.1 Windows

Extract all files from the zip file and place them in C:\Program Files\OpenMM. (On 64 bit

Windows, use C:\Program Files (x86)\OpenMM). Programs that use OpenMM should

include C:\Program Files\OpenMM\lib in the PATH. To set the PATH permanently:

1. Click on Start -> Control Panel -> System (On Windows 7, select Start -> Control

Panel -> System and Security -> System)

2. Click on the “Advanced” tab or the “Advanced system settings” link

3. Click “Environment Variables”

4. Under “System variables,” select the line for “Path” and click “Edit…”

5. Add C:\Program Files\OpenMM\lib to the “Variable value”

6. If you install OpenMM to a location other than C:\Program Files, you will also need

to set the variable OPENMM_PLUGIN_DIR. Under “System variables,” click the

“New” button. Set the “Variable name” to OPENMM_PLUGIN_DIR. Set the

28 INSTRUCTIONS FOR PRE-COMPILED OPENMM BINARIES AND GPU SOFTWARE

“Variable value” to the path for the plug-ins directory (default: C:\Program

Files\OpenMM\lib\plugins). Click “OK.”

7. Click “OK”

3.3.2 Linux

The install script copies the files to the directory you select, which is /usr/local/openmm by

default. Programs that use OpenMM should include /usr/local/openmm/lib in the

LD_LIBRARY_PATH. To set the LD_LIBRARY_PATH, type:

export LD_LIBRARY_PATH=/usr/local/openmm/lib:$LD_LIBRARY_PATH

This sets the LD_LIBRARY_PATH only for the terminal you are in. To set it permanently,

you will need to add it to, for example, your .bash_profile if you use the BASH shell.

If you choose to install OpenMM some place other than the default location

(/usr/local/openmm), you will need to also set the OPENMM_PLUGIN_DIR to the

openmm/lib/plugins directory. For example:

export OPENMM_PLUGIN_DIR=/home/<user_name>/openmm/lib/plugins

Again, to set the variable permanently, you will need to add it to, for example, your

.bash_profile if you use the BASH shell.

3.3.3 Mac OS X

The install script copies the files to the directory you select, which is /usr/local/openmm by

default. Programs that use OpenMM should include /usr/local/openmm/lib in the

DYLD_LIBRARY_PATH. To set the DYLD_LIBRARY_PATH, type:

export DYLD_LIBRARY_PATH=/usr/local/openmm/lib:$DYLD_LIBRARY_PATH

This sets the DYLD_LIBRARY_PATH only for the terminal you are in. To set it

permanently, you will need to add it to your .bash_profile.

INSTRUCTIONS FOR PRE-COMPILED OPENMM BINARIES AND GPU SOFTWARE 29

If you choose to install OpenMM some place other than the default location

(/usr/local/openmm), you will need to also set the OPENMM_PLUGIN_DIR to the

openmm/lib/plugins directory. For example:

export OPENMM_PLUGIN_DIR=/Users/<user_name>/openmm/lib/plugins

Again, to set the variable permanently, you will need to add it to, for example, your

.bash_profile if you use the BASH shell.

3.4 Installing GPU Software

To take advantage of the GPU acceleration provided via OpenMM, your computer needs to

be equipped with one of the supported GPU cards:

Supported NVIDIA GPUs (CUDA or OpenCL):

http://www.nvidia.com/object/cuda_learn_products.html

 Supported AMD GPUs (OpenCL):

 http://developer.amd.com/sdks/AMDAPPSDK/pages/DriverCompatibility.aspx

You also need to install CUDA (for NVIDIA GPUs), or OpenCL (for AMD GPUs) and test it

before running OpenMM and the provided examples.

3.4.1 Installing CUDA for NVIDIA GPUs

For NVIDIA GPUs, you need to have CUDA version 4.0 or later installed to get the GPU

acceleration. It is recommended that you test your installation before trying to run

OpenMM and the provided examples.

3.4.1.1 Windows

1. Go to http://www.nvidia.com/object/cuda_get.html

30 INSTRUCTIONS FOR PRE-COMPILED OPENMM BINARIES AND GPU SOFTWARE

2. Download and install the CUDA Driver, the CUDA Toolkit, and (optionally) the

CUDA SDK code samples. The driver and toolkit are needed to get the GPU

acceleration. The code samples are required for testing purposes. For 64-bit

machines, you should install the 64-bit driver, but download the 32-bit version of the

toolkit since the OpenMM binary is 32-bit.

	

3. (Optional) To verify that you’ve installed things correctly, run a sample program

available with the SDK code samples.

	

Go to Start -> All Programs -> NVIDIA Corporation -> NVIDIA GPU Computing

SDK … -> NVIDIA GPU Computing SDK … Browser

A window appears showing all the different sample programs you can try running

(Figure 3.1).

Select the “CUDA C Samples” tab. Locate the program “Device Query” on this page

and click on the associated “Run” link on the right-hand side. If things are running

correctly, a window will appear stating how many devices are running CUDA (there

should be at least 1) and that it/they passed the test.

INSTRUCTIONS FOR PRE-COMPILED OPENMM BINARIES AND GPU SOFTWARE 31

Figure	 3.1:	 	 Window	 for	 browsing	 the	 NVIDIA	 code	 samples	

3.4.1.2 Mac OS X

1. Go to http://www.nvidia.com/object/cuda_get.html

2. Download and install the CUDA Toolkit, CUDA Driver, and (optionally) CUDA SDK

code samples, version 4.0. The toolkit and driver are needed to get the GPU

acceleration. The code samples are required for testing purposes.

3. (Optional) To verify that you’ve installed things correctly, run a sample program

available with the SDK code samples.

a. Open a terminal window. Go to Macintosh HD -> Applications -> Utilities.

Click on Terminal.

b. Set your environment variables so that your computer can locate the CUDA

programs by typing the following two lines:

export PATH=/usr/local/cuda/bin:$PATH

32 INSTRUCTIONS FOR PRE-COMPILED OPENMM BINARIES AND GPU SOFTWARE

export DYLD_LIBRARY_PATH=/usr/local/cuda/lib:

$DYLD_LIBRARY_PATH

This sets the environment variables only for the terminal you are in. To set

them permanently, you can add it to your bash_profile.

Within the terminal window, navigate to the location of the code samples. If

you installed everything in the default directories, then you would type:

cd /Developer/GPU Computing/C

c. Compile the test programs by typing:

make

d. Navigate to the location of the compiled programs by typing:

cd /Developer/GPU Computing/C/bin/darwin/release

e. Run the deviceQuery program:

./deviceQuery

If things are running correctly, you will see how many devices are running

CUDA (there should be at least 1) and a printout saying that it/they passed

the test.

Troubleshooting:

If no devices are found, verify that you have a supported GPU card. If you do, re-run the

installer and make sure to select a custom installation verifying that all boxes, including

the kernel extension, are checked.

INSTRUCTIONS FOR PRE-COMPILED OPENMM BINARIES AND GPU SOFTWARE 33

If you have multiple GPUs and only one is activated, this may be because of the energy-

saving options. (This is the case for some MacBook Pros, which ship with a deactivated

9600M GPU). To change the energy-saving options, click System Preferences -> Energy

Saver and set the graphics option to “Higher Performance.” You will need to log out and

then log back in for the new options to take effect.

Additional instructions and troubleshooting tips are provided in the “Getting Started”

manual on the CUDA download site.

3.4.1.3 Linux

1. To compile the GPU code on a Linux machine, you will need gcc version 4.0 through

4.4. You can verify the version gcc installed on your system by typing:

gcc --version

2. Go to http://www.nvidia.com/object/cuda_get.html

3. Download and install the CUDA Driver, the CUDA Toolkit and (optionally) the

CUDA SDK code samples, version 4.0. The toolkit and driver are needed to get the

GPU acceleration. The code samples are required for testing purposes. We have

tested this for the Redhat Enterprise Linux 5.x version (64-bit). Please refer to the

CUDA website and “Getting Started” manual for a list of all supported Linux

distributions and additional instructions.

a. Open a terminal window.

b. If you are running X Windows, you will need to turn it off to install the driver.

You can do this by typing in the following as a superuser:

/sbin/init 3

	

c. Run the CUDA driver installation script as a superuser. If you turned off X

Windows, you can turn it on again after the installation is complete (try the

commands startx or init 5).

	

34 INSTRUCTIONS FOR PRE-COMPILED OPENMM BINARIES AND GPU SOFTWARE

d. Run the CUDA toolkit installation script as a superuser.

	

e. Set your environment variables so that your computer can locate the CUDA

programs.

For the BASH shell (for your individual account)

1. Set your PATH by typing:

export PATH=/usr/local/cuda/bin:$PATH

2. Set your library path. Depending on whether you use 32-bit or 64-

bit Linux, type one of the following:

For 32-bit, type (all on one line):

export LD_LIBRARY_PATH=/usr/local/cuda/lib:
$LD_LIBRARY_PATH

For 64-bit, type (all on one line):

export LD_LIBRARY_PATH=/usr/local/cuda/lib64:
$LD_LIBRARY_PATH

**These commands set the environment variables only for the terminal

you are in and only for your account. To set them permanently, you

will need to add it to ~/.bash_profile or ~/.bashrc	

	
	

INSTRUCTIONS FOR PRE-COMPILED OPENMM BINARIES AND GPU SOFTWARE 35

For csh or tcsh shells (for your individual account)

1. Set your PATH by typing:

setenv PATH “.:/usr/local/cuda/bin:$PATH”

2. Set your library path. Depending on whether you use 32-bit or 64-

bit Linux, type one of the following:

For 32-bit, type (all on one line):

setenv LD_LIBRARY_PATH “/usr/local/cuda/lib:
$LD_LIBRARY_PATH”

For 64-bit, type (all on one line):

setenv LD_LIBRARY_PATH “/usr/local/cuda/lib64:
$LD_LIBRARY_PATH”

**These commands set the environment variables only for the terminal

you are in and only for your account. To set them permanently, you

will need to add it to ~/.cshrc (or similar) file.	

	

	
	
	

36 INSTRUCTIONS FOR PRE-COMPILED OPENMM BINARIES AND GPU SOFTWARE

To set library path system-wide

CONSULT YOUR SYSTEM ADMINISTRATOR

BEFORE CONTINUING

1. You will still need to set your PATH as above.

2. Depending on whether you use 32-bit or 64-bit Linux, have your

system administrator include one of the following paths in

/etc/ld.so.conf (or equivalent type file) in the list of directories:

For 32-bit: /usr/local/cuda/lib

For 64-bit: /usr/local/cuda/lib64

3. Then, type as superuser/root:	

	

ldconfig

	

f. Run the CUDA SDK installation script as a regular user.

4. (Optional) To verify that you’ve installed things correctly, run a sample program

available with the SDK code samples.

a. Within the terminal window, navigate to the location to compile the code

samples. If you installed everything in the default directories, then you would

type (default directory is only valid for version 2.3):

cd $HOME/NVIDIA_GPU_Computing_SDK/C

INSTRUCTIONS FOR PRE-COMPILED OPENMM BINARIES AND GPU SOFTWARE 37

b. Compile the test programs by typing:

make

c. Navigate to the location of the compiled programs by typing (directory is only

valid for version 2.3):

cd $HOME/NVIDIA_GPU_Computing_SDK/C/bin/linux/release

d. Run the deviceQuery program:

./deviceQuery

If things are running correctly, you will see how many devices are running

CUDA (there should be at least 1) and a printout saying that it/they passed

the test.

Additional instructions and troubleshooting tips are provided in the “Getting Started”

manual on the CUDA download site.

	

3.4.2 Installing OpenCL

3.4.2.1 Mac OS X

Mac computers with Mac OS X 10.6 (Snow Leopard) or later come with OpenCL installed.

OpenCL is not available for earlier versions of Mac OS. If you have Snow Leopard or later,

you already have OpenCL installed. If you don’t have Snow Leopard or later, you must

upgrade your operating system to get OpenCL.

3.4.2.2 Linux or Windows with NVIDIA GPUs

OpenCL is installed with CUDA on Linux and Windows with NVIDIA GPUs. Follow the

instructions in section 3.4.1 to install CUDA if you have an NVIDIA GPU.

38 INSTRUCTIONS FOR PRE-COMPILED OPENMM BINARIES AND GPU SOFTWARE

3.4.2.3 Linux or Windows with AMD GPUs (or to run on CPU)

If you have an AMD GPU, install OpenCL by following the instructions at the AMD website

http://developer.amd.com/sdks/amdappsdk/downloads/pages/default.aspx. The AMD

APP SDK also supports running OpenCL on CPUs and is an efficient way to use OpenMM on

machines without GPUs (such as headless servers).

OpenMM requires version 2.4 or later of the AMD APP SDK. If you want to use an AMD

GPU, you also need version 11.7 or later of the Catalyst driver.

Do not use OpenMM with earlier versions of the driver or SDK. They contain serious bugs

which may cause your simulations to produce incorrect results.

4 Compiling OpenMM from

Source Code

This chapter describes the procedure for building and installing OpenMM libraries from

source code. It is recommended that you use binary OpenMM libraries, if possible. If there

are not suitable binary libraries for your system, consider building OpenMM from source

code by following these instructions.

4.1 Prerequisites

Before building OpenMM from source, you will need the following:

• A C++ compiler

• CMake

• OpenMM source code

See the sections below for specific instructions for the different platforms.

4.1.1 Get a C++ compiler

You must have a C++ compiler installed before attempting to build OpenMM from source.

4.1.1.1 Mac and Linux: gcc

Use gcc on Mac/Linux. We have tested the examples on Fedora 10 with gcc 4.3.2 and on

Mac OS X 10.6.8 with gcc 4.2.1.

To find out whether you have gcc installed, type:

which gcc

40 COMPILING OPENMM FROM SOURCE CODE

To find out what version of gcc you have, type:

gcc –version

If you do not already have gcc installed, you will need to download and install it. On the

Mac, this means downloading the Xcode Tools from

http://developer.apple.com/tools/Xcode/.

4.1.1.2 Windows: Visual Studio

On Windows systems, use the C++ compiler in Visual Studio version 10 (2010) or 9 (2008).

You can download a free version of Visual C++ 10 2010 (Express Edition) from

http://www.microsoft.com/express/vc/.

4.1.2 Install CMake

CMake is the build system used for OpenMM. You must install CMake version 2.8 or higher

before attempting to build OpenMM from source. You can get CMake from

http://www.cmake.org/. If you choose to build CMake from source on Linux, make sure you

have the curses library installed beforehand, so that you will be able to build the CCMake

visual CMake tool.

4.1.3 Get the OpenMM source code

You will also need the OpenMM source code before building OpenMM from source. To

download and unpack OpenMM source code:

1. Browse to https://simtk.org/home/openmm/.

2. Click the "Downloads" link in the navigation bar on the left side.

3. Download OpenMM<Version>-Source.zip, choosing the latest version.

4. Unpack the zip file. Note the location where you unpacked the OpenMM source

code.

4.1.4 Other Required Software

There are several other pieces of software you must install to compile certain parts of

OpenMM. Which of these you need depends on the options you select in CMake.

COMPILING OPENMM FROM SOURCE CODE 41

• For compiling the CUDA Platform, you need:

o CUDA (See Chapter 3 for installation instructions.)

• For compiling the OpenCL Platform, you need:

o OpenCL (See Chapter 3 for installation instructions.)

• For compiling C and Fortran API wrappers, you need:

o A Fortran compiler

o gccxml (http://www.gccxml.org) - Download the ‘Development Version from

CVS’ on the site’s download page. The ‘Latest Release (0.6.0)’ files also

available on the site’s download page have been reported to fail.

• For compiling the Python API wrappers, you need:

o Python 2.6 or 2.7 (http://www.python.org)

o SWIG (http://www.swig.org)

o py-dom-xpath (http://code.google.com/p/py-dom-xpath)

o Doxygen (http://www.doxygen.org)

• To generate API documentation, you need:

o Doxygen (http://www.doxygen.org)

4.2 Step 1: Configure with CMake

4.2.1 Build and source directories

First, create a directory in which to build OpenMM. A good name for this directory is

build_openmm. We will refer to this as the “build_openmm directory” in the instructions

below. This directory will contain the temporary files used by the OpenMM CMake build

system. Do not create this build directory within the OpenMM source code directory. This

is what is called an “out of source” build, because the build files will not be mixed with the

source files.

Also note the location of the OpenMM source directory (i.e., where you unpacked the source

code zip file). There should be a subdirectory called src, which contains a file called

CMakeLists.txt. Note the location of this src directory. This directory is what we will call the

“OpenMM source directory” in the following instructions.

42 COMPILING OPENMM FROM SOURCE CODE

4.2.2 Starting CMake

Configuration is the first step of the CMake build process. In the configuration step, the

values of important build variables will be established.

4.2.2.1 Mac and Linux

On Mac and Linux machines, type the following two lines:

cd build_openmm

 ccmake -i <path to OpenMM src directory>

That is not a typo. ccmake has two c’s. CCMake is the visual CMake configuration tool.

Press “c” within the CCMake interface to configure CMake. Follow the instructions in the

“All Platforms” section below.

4.2.2.2 Windows

On Windows, perform the following steps:

• Click Start->All Programs->CMake 2.8->CMake

• In the box labeled "Where is the source code:" browse to OpenMM src directory

(containing top CMakeLists.txt)

• In the box labeled "Where to build the binaries" browse to your build_openmm

directory.

• Click the "Configure" button at the bottom of the CMake screen.

• Select "Visual Studio 9 2008" from the list of Generators. (or Visual Studio 10, if

that is what you have installed)

• Follow the instructions in the “All Platforms” section below.

4.2.2.3 All platforms

There are several variables that can be adjusted in the CMake interface:

• If you intend to use CUDA (NVIDIA) or OpenCL acceleration, set the variable

OPENMM_BUILD_CUDA_LIB or OPENMM_BUILD_OPENCL_LIB, respectively,

to ON. Before doing so, be certain that you have installed and tested the drivers for

the platform you have selected (see Section 3.4 on installing GPU software).

COMPILING OPENMM FROM SOURCE CODE 43

• There are lots of other options starting with OPENMM_BUILD that control whether

to build particular features of OpenMM, such as plugins, API wrappers, and

documentation.

• Do not worry about the SVNVERSION_EXE variable with value

SVNVERSION_EXE_NOT_FOUND. That is unimportant.

• Set the variable CMAKE_INSTALL_PREFIX to the location where you want to

install OpenMM. If you choose to change the CMAKE_INSTALL_PREFIX, you

might also need to change the variable OPENMM_INSTALL_PREFIX, which is

found in the advanced parameters. Press "t" or "Show Advanced Values" to expose

the OPENMM_INSTALL_PREFIX variable in the CMake interface.

Configure (press “c”) again. Adjust any variables that cause an error or are set to

NOTFOUND (except for SVNVERSION_EXE).

Continue to configure (press “c”) until no starred/red CMake variables are displayed.

Congratulations, you have completed the configuration step.

4.3 Step 2: Generate Build Files with CMake

Once the configuration is done, the next step is generation. The generate “g” or “OK” or

“Generate” option will not be available until configuration has completely converged.

4.3.1 Windows

• Press the "OK" or “Generate” button to generate Visual Studio project files.

• Ignore any warnings about "Policy CMP003" (Press "OK")

• If CMake does not exit automatically, press the close button in the upper-right corner

of the CMake title bar to exit.

4.3.2 Mac and Linux

• Press g to generate the Makefile.

• Ignore any warnings about "Policy CMP003" (Press “e”)

44 COMPILING OPENMM FROM SOURCE CODE

• If CMake does not exit automatically, press “q” to exit.

That’s it! Generation is the easy part. Now it’s time to build.

4.4 Step 3: Build OpenMM

4.4.1 Windows

• Open the file OpenMM.sln in your openmm_build directory in Visual Studio.

• Set the configuration type to "Release" (not "Debug") in the toolbar.

• From the Build menu, click Build->Build Solution

• The OpenMM libraries and test programs will be created. This takes some time.

• The test program TestCudaRandom might not build on Windows. This is OK.

4.4.2 Mac and Linux

• Type make in the openmm_build directory.

• The OpenMM libraries and test programs will be created. This takes some time.

4.5 Step 4: Test your build

After OpenMM has been built, test the build before installing.

4.5.1 Windows

In Visual Studio, far-click/right-click RUN_TESTS in the Solution Explorer Panel. Select

RUN_TESTS->build to begin testing. Ignore any failures for TestCudaRandom.

4.5.2 Mac and Linux

Type:

make test

You should see a series of test results like this:

COMPILING OPENMM FROM SOURCE CODE 45

 1/ 38 Testing TestReferenceAndersenThermosta Passed

 2/ 38 Testing TestReferenceBrownianIntegrato Passed

 3/ 38 Testing TestReferenceCMMotionRemover Passed

 4/ 38 Testing TestReferenceCustomNonbondedFo Passed

 ... <many other tests> ...

Passed is good. FAILED is bad. If any tests fail, you can run them individually to get more

detailed error information. Note that some tests are stochastic, and therefore are expected

to fail a small fraction of the time. These tests will say so in the error message:

./TestReferenceLangevinIntegrator

exception: Assertion failure at

TestReferenceLangevinIntegrator.cpp:129. Expected 9.97741,

found 10.7884 (This test is stochastic and may occasionally

fail)

4.6 Step 5: Install OpenMM

If all of the tests pass, you are ready to install OpenMM.

4.6.1 Windows

In the Solution Explorer Panel, far-click/right-click INSTALL->build.

4.6.2 Mac and Linux

Type:

make install

If you are installing to a system area, such as /usr/local/openmm/, you will need to type:

sudo make install

46 COMPILING OPENMM FROM SOURCE CODE

4.7 Step 6: Set Your Library Path

Refer to Section 3.3 for instructions on setting your library path environment variable

(PATH, LD_LIBRARY_PATH, or DYLD_LIBRARY_PATH) to point to your new OpenMM

installation.

Congratulations! You successfully have built and installed OpenMM from source!

	

5 OpenMM Tutorials

5.1 Example Files Overview

Four example files are provided in the examples folder, each designed with a specific

objective.

• HelloArgon: A very simple example intended for verifying that you have installed

OpenMM correctly. It also introduces you to the basic classes within OpenMM.

• HelloSodiumChloride: This example shows you our recommended strategy for

integrating OpenMM into an existing molecular dynamics code.

• HelloEthane: The main purpose of this example is to demonstrate how to tell

OpenMM about bonded forces (bond stretch, bond angle bend, dihedral torsion).

• HelloWaterBox: This example shows you how to use OpenMM to model explicit

solvation, including setting up periodic boundary conditions. It runs extremely fast

on a GPU but very, very slowly on a CPU, so it is an excellent example to use to

compare performance on the GPU versus the CPU. The other examples provided use

systems where the performance difference would be too small to notice.

The two fundamental examples—HelloArgon and HelloSodiumChloride—are provided in

C++, C, and Fortran, as indicated in the table below. The other two examples—HelloEthane

and HelloWaterBox—follow the same structure as HelloSodiumChloride but demonstrate

more calls within the OpenMM API. They are only provided in C++ but can be adapted to

run in C and Fortran by following the mappings described in Chapter 7. HelloArgon and

HelloSodiumChloride also serve as examples of how to do these mappings. The sections

below describe the HelloArgon, HelloSodiumChloride, and HelloEthane programs in more

detail.

48 OPENMM TUTORIALS

Example Solvent Thermostat Boundary
Forces &

Constraints
API

Argon Vacuum None None Non-bonded*
C++, C,

Fortran

Sodium

Chloride

Implicit

water
Langevin None Non-bonded*

C++, C,

Fortran

Ethane Vacuum None None

Non-bonded,*

stretch, bend,

torsion

C++

Water Box
Explicit

water
Andersen Periodic

Non-bonded,*

stretch, bend,

constraints

C++

*van der Waals and Coulomb forces

5.2 Running Example Files

The instructions below are for running the HelloArgon program. A similar process would be

used to run the other examples.

5.2.1 Visual Studio

Navigate to wherever you saved the example files. Descend into the directory folder

VisualStudio. Double-click the file HelloArgon.sln (a Microsoft Visual Studio Solution file).

Visual Studio will launch.

Note: these files were created using Visual Studio 8. If you are using Visual Studio 9 (2008

Express Edition), the program will ask if you want to convert the files to the new version.

Agree and continue through the conversion process.

In Visual Studio, make sure the "Solution Configuration" is set to "Release" and not "Debug".

The “Solution Configuration” can be set using the drop-down menu in the top toolbar, next

OPENMM TUTORIALS 49

to the green arrow (see Figure 5.1 below). Due to incompatibilities among Visual Studio

versions, we do not provide pre-compiled debug binaries.

Figure	 5.1:	 	 Setting	 "Solution	 Configuration"	 to	 "Release"	 mode	 in	 Visual	 Studio	

From the command options select Debug -> Start Without Debugging (or CTRL-F5). See

Figure 5.2. This will also compile the program, if it has not previously been compiled.

Figure	 5.2:	 	 Run	 a	 program	 in	 Visual	 Studio	

You should see a series of lines like the following output on your screen:

REMARK Using OpenMM platform Reference

MODEL 1

ATOM 1 AR AR 1 0.000 0.000 0.000 1.00 0.00

ATOM 2 AR AR 1 5.000 0.000 0.000 1.00 0.00

ATOM 3 AR AR 1 10.000 0.000 0.000 1.00 0.00

ENDMDL

50 OPENMM TUTORIALS

…

MODEL 250

ATOM 1 AR AR 1 0.233 0.000 0.000 1.00 0.00

ATOM 2 AR AR 1 5.068 0.000 0.000 1.00 0.00

ATOM 3 AR AR 1 9.678 0.000 0.000 1.00 0.00

ENDMDL

MODEL 251

ATOM 1 AR AR 1 0.198 0.000 0.000 1.00 0.00

ATOM 2 AR AR 1 5.082 0.000 0.000 1.00 0.00

ATOM 3 AR AR 1 9.698 0.000 0.000 1.00 0.00

ENDMDL

MODEL 252

ATOM 1 AR AR 1 0.165 0.000 0.000 1.00 0.00

ATOM 2 AR AR 1 5.097 0.000 0.000 1.00 0.00

ATOM 3 AR AR 1 9.717 0.000 0.000 1.00 0.00

ENDMDL

5.2.1.1 Determining the platform being used

The very first line of the output will indicate whether you are running on the CPU (Reference

platform) or a GPU (CUDA or OpenCL platform). It will say one of the following:

REMARK Using OpenMM platform Reference

REMARK Using OpenMM platform Cuda

REMARK Using OpenMM platform OpenCL

If you have a supported GPU, the program should, by default, run on the GPU.

5.2.1.2 Visualizing the results

You can output the results to a PDB file that could be visualized using programs like VMD

(http://www.ks.uiuc.edu/Research/vmd/) or PyMol (http://pymol.sourceforge.net/). To do

this within Visual Studios:

1. Right-click on the project name HelloArgon (not one of the files) and select the

“Properties” option.

OPENMM TUTORIALS 51

2. On the “Property Pages” form, select “Debugging” under the “Configuration

Properties” node.

3. In the “Command Arguments” field, type:

> argon.pdb

This will save the output to a file called argon.pdb in the current working directory

(default is the VisualStudio directory). If you want to save it to another directory,

you will need to specify the full path.

4. Select “OK”

Now, when you run the program in Visual Studio, no text will appear. After a short time,

you should see the message “Press any key to continue…,” indicating that the

program is complete and that the PDB file has been completely written.

5.2.2 Mac OS X/Linux

Navigate to wherever you saved the example files.

Verify your makefile by consulting the MakefileNotes file in this directory, if necessary.

Type:

make

Then run the program by typing:

./HelloArgon

You should see a series of lines like the following output on your screen:

REMARK Using OpenMM platform Reference

MODEL 1

ATOM 1 AR AR 1 0.000 0.000 0.000 1.00 0.00

ATOM 2 AR AR 1 5.000 0.000 0.000 1.00 0.00

52 OPENMM TUTORIALS

ATOM 3 AR AR 1 10.000 0.000 0.000 1.00 0.00

ENDMDL

…

MODEL 250

ATOM 1 AR AR 1 0.233 0.000 0.000 1.00 0.00

ATOM 2 AR AR 1 5.068 0.000 0.000 1.00 0.00

ATOM 3 AR AR 1 9.678 0.000 0.000 1.00 0.00

ENDMDL

MODEL 251

ATOM 1 AR AR 1 0.198 0.000 0.000 1.00 0.00

ATOM 2 AR AR 1 5.082 0.000 0.000 1.00 0.00

ATOM 3 AR AR 1 9.698 0.000 0.000 1.00 0.00

ENDMDL

MODEL 252

ATOM 1 AR AR 1 0.165 0.000 0.000 1.00 0.00

ATOM 2 AR AR 1 5.097 0.000 0.000 1.00 0.00

ATOM 3 AR AR 1 9.717 0.000 0.000 1.00 0.00

ENDMDL

5.2.2.1 Determining the platform being used

The very first line of the output will indicate whether you are running on the CPU (Reference

platform) or a GPU (CUDA or OpenCL platform). It will say one of the following:

REMARK Using OpenMM platform Reference

REMARK Using OpenMM platform Cuda

REMARK Using OpenMM platform OpenCL

If you have a supported GPU, the program should, by default, run on the GPU.

5.2.2.2 Visualizing the results

You can output the results to a PDB file that could be visualized using programs like VMD

(http://www.ks.uiuc.edu/Research/vmd/) or PyMol (http://pymol.sourceforge.net/) by

typing:

OPENMM TUTORIALS 53

./HelloArgon > argon.pdb

5.2.2.3 Compiling Fortran and C examples

The Makefile provided with the examples can also be used to compile the Fortran and C

examples.

The Fortran compiler needs to load a version of the libstdc++.dylib library that is compatible

with the version of gcc used to build OpenMM; OpenMM for Mac is compiled using gcc 4.2.

If you are compiling with a different version, edit the Makefile and add the following flag to

FCPPLIBS: –L/usr/lib/gcc/i686-apple-darwin10/4.2.1.

When the Makefile has been updated, type:

make all

5.3 HelloArgon Program

The HelloArgon program simulates three argon atoms in a vacuum. It is a simple program

primarily intended for you to verify that you are able to compile, link, and run with

OpenMM. It also demonstrates the basic calls needed to run a simulation using OpenMM.

5.3.1 Including OpenMM-defined functions

The OpenMM header file OpenMM.h instructs the program to include everything defined by

the OpenMM libraries. Include the header file by adding the following line at the top of your

program:

#include "OpenMM.h"

5.3.2 Running a program on GPU platforms

By default, a program will run on the Reference platform. In order to run a program on

another platform (e.g., an NVIDIA or AMD GPU), you need to load the required shared

libraries for that other platform (e.g., Cuda, OpenCL). The easy way to do this is to call:

54 OPENMM TUTORIALS

OpenMM::Platform::loadPluginsFromDirectory(
 OpenMM::Platform::getDefaultPluginsDirectory());

This will load all the shared libraries (plug-ins) that can be found, so you do not need to

explicitly know which libraries are available on a given machine. In this way, the program

will be able to run on another platform, if it is available.

5.3.3 Running a simulation using the OpenMM public API

The OpenMM public API was described in Section 2.4. Here you will see how to use those

classes to create a simple system of three argon atoms and run a short simulation. The main

components of the simulation are within the function simulateArgon():

1. System – We first establish a system and add a non-bonded force to it. At this

point, there are no particles in the system.

// Create a system with nonbonded forces.

 OpenMM::System system;
 OpenMM::NonbondedForce* nonbond =

new OpenMM::NonbondedForce();
system.addForce(nonbond);

We then add the three argon atoms to the system. For this system, all the data for

the particles are hard-coded into the program. While not a realistic scenario, it

makes the example simpler and clearer. The std::vector<OpenMM::Vec3> is an

array of vectors of 3.

 // Create three atoms.
 std::vector<OpenMM::Vec3> initPosInNm(3);
 for (int a = 0; a < 3; ++a)
 {
 initPosInNm[a] = OpenMM::Vec3(0.5*a,0,0); // location, nm

 system.addParticle(39.95); // mass of Ar, grams per mole

 // charge, L-J sigma (nm), well depth (kJ)
 nonbond->addParticle(0.0, 0.3350, 0.996); // vdWRad(Ar)=

.188 nm
}

OPENMM TUTORIALS 55

Units: Be very careful with the units in your program. It is very easy to make

mistakes with the units, so we recommend including them in your variable names, as

we have done here initPosInNm (position in nanometers). OpenMM provides

conversion constants that should be used whenever there are conversions to be done;

for simplicity, we did not do that in HelloArgon, but all the other examples show the

use of these constants.

It is hard to overemphasize the importance of careful units handling—it is very easy

to make a mistake despite, or perhaps because of, the trivial nature of units

conversion. For more information about the units used in OpenMM, see Section

13.2.

Adding Particle Information: Both the system and the non-bonded force

require information about the particles. The system just needs to know the mass of

the particle. The non-bonded force requires information about the charge (in this

case, argon is uncharged), and the Lennard-Jones parameters sigma (zero-energy

separation distance) and well depth (see Section 14.6.1 for more details).

Note that the van der Waals radius for argon is 0.188 nm and that it has already been

converted to sigma (0.335 nm) in the example above where it is added to the non-

bonded force; in your code, you should make use of the appropriate conversion

factor supplied with OpenMM as discussed in Section 13.2.

2. Integrator – We next specify the integrator to use to perform the calculations. In

this case, we choose a Verlet integrator to run a constant energy simulation. The only

argument required is the step size in picoseconds.

OpenMM::VerletIntegrator integrator(0.004); // step size in ps

We have chosen to use 0.004 picoseconds, or 4 femtoseconds, which is larger than

that used in a typical molecular dynamics simulation. However, since this example

does not have any bonds with higher frequency components, like most molecular

dynamics simulations do, this is an acceptable value.

56 OPENMM TUTORIALS

3. Context – The context is an object that consists of an integrator and a system. It

manages the state of the simulation. The code below initializes the context. We then

let the context select the best platform available to run on, since this is not

specifically specified, and print out the chosen platform. This is useful information,

especially when debugging.

// Let OpenMM Context choose best platform.
 OpenMM::Context context(system, integrator);
 printf("REMARK Using OpenMM platform %s\n",

 context.getPlatform().getName().c_str());

We then initialize the system, setting the initial time, as well as the initial positions

and velocities of the atoms. In this example, we leave time and velocity at their

default values of zero.

 // Set starting positions of the atoms. Leave time and velocity
zero.

 context.setPositions(initPosInNm);

4. Initialize and run the simulation – The next block of code runs the simulation

and saves its output. For each frame of the simulation (in this example, a frame is

defined by the advancement interval of the integrator; see below), the current state of

the simulation is obtained and written out to a PDB-formatted file.

// Simulate.
for (int frameNum=1; ;++frameNum) {

 // Output current state information.
 OpenMM::State state =

context.getState(OpenMM::State::Positions);
 const double timeInPs = state.getTime();
 writePdbFrame(frameNum, state); // output coordinates

Getting state information has to be done in bulk, asking for information for all the

particles at once. This is computationally expensive since this information can

reside on the GPUs and requires communication overhead to retrieve, so you do not

want to do it very often. In the above code, we only request the positions, since that

is all that is needed, and time from the state.

OPENMM TUTORIALS 57

The simulation stops after 10 ps; otherwise we ask the integrator to take 10 steps (so

one frame is equivalent to 10 time steps). Normally, we would want to take more

than 10 steps at a time, but to get a reasonable-looking animation, we use 10.

 if (timeInPs >= 10.)
 break;

 // Advance state many steps at a time, for efficient use of OpenMM.
 integrator.step(10); // (use a lot more than this normally)

5.3.4 Error handling for OpenMM

Error handling for OpenMM is explicitly designed so you do not have to check the status

after every call. If anything goes wrong, OpenMM throws an exception. It uses standard

exceptions, so on many platforms, you will get the exception message automatically.

However, we recommend using try-catch blocks to ensure you do catch the exception.

int main()
{
 try {
 simulateArgon();
 return 0; // success!
 }
 // Catch and report usage and runtime errors detected by OpenMM and
fail.
 catch(const std::exception& e) {
 printf("EXCEPTION: %s\n", e.what());
 return 1; // failure!
 }
}

5.3.5 Writing out PDB files

For the HelloArgon program, we provide a simple PDB file writing function

writePdbFrame that only writes out argon atoms. The function has nothing to do with

OpenMM except for using the OpenMM State. The function extracts the positions from the

State in nanometers (10-9 m) and converts them to Angstroms (10-10 m) to be compatible

with the PDB format. Again, we emphasize how important it is to track the units being

used!

void writePdbFrame(int frameNum, const OpenMM::State& state)
{
 // Reference atomic positions in the OpenMM State.

58 OPENMM TUTORIALS

 const std::vector<OpenMM::Vec3>& posInNm = state.getPositions();

 // Use PDB MODEL cards to number trajectory frames
 printf("MODEL %d\n", frameNum); // start of frame
 for (int a = 0; a < (int)posInNm.size(); ++a)
 {
 printf("ATOM %5d AR AR 1 ", a+1); // atom number
 printf("%8.3f%8.3f%8.3f 1.00 0.00\n", // coordinates
 // "*10" converts nanometers to Angstroms
 posInNm[a][0]*10, posInNm[a][1]*10, posInNm[a][2]*10);
 }
 printf("ENDMDL\n"); // end of frame
}

MODEL and ENDMDL are used to mark the beginning and end of a frame, respectively. By

including multiple frames in a PDB file, you can visualize the simulation trajectory.

5.3.6 HelloArgon output

The output of the HelloArgon program can be saved to a .pdb file and visualized using

programs like VMD or PyMol (see Section 5.2). You should see three atoms moving linearly

away and towards one another:

You may need to adjust the van der Waals radius in your visualization program to see the

atoms colliding.

5.4 HelloSodiumChloride Program

The HelloSodiumChloride models several sodium (Na+) and chloride (Cl-) ions in implicit

solvent (using a Generalized Born/Surface Area, or GBSA, OBC model). As with the

HelloArgon program, only non-bonded forces are simulated.

The main purpose of this example is to illustrate our recommended strategy for integrating

OpenMM into an existing molecular dynamics (MD) code:

OPENMM TUTORIALS 59

1. Write a few, high-level interface routines containing all your OpenMM

calls: Rather than make OpenMM calls throughout your program, we recommend

writing a handful of interface routines that understand both your MD code’s data

structures and OpenMM. Organize these routines into a separate compilation unit so

you do not have to make huge changes to your existing MD code. These routines

could be written in any language that is callable from the existing MD code. We

recommend writing them in C++ since that is what OpenMM is written in, but you

can also write them in C or Fortran; see Chapter 7.

2. Call only these high-level interface routines from your existing MD code:

This provides a clean separation between the existing MD code and OpenMM, so that

changes to OpenMM will not directly impact the existing MD code. One way to

implement this is to use opaque handles, a standard trick used (for example) for

opening files in Linux. An existing MD code can communicate with OpenMM via the

handle, but knows none of the details of the handle. It only has to hold on to the

handle and give it back to OpenMM.

In the example described below, you will see how this strategy can be implemented for a very

simple MD code. Chapter 8 describes the strategies used in integrating OpenMM into real

MD codes.

5.4.1 Simple molecular dynamics system

The initial sections of HelloSodiumChloride.cpp represent a very simple molecular dynamics

system. The system includes modeling and simulation parameters and the atom and force

field data. It also provides a data structure posInAng[3] for storing the current state.

These sections represent (in highly simplified form) information that would be available

from an existing MD code, and will be used to demonstrate how to integrate OpenMM with

an existing MD program.

// ---
// MODELING AND SIMULATION PARAMETERS
// ---
static const double Temperature = 300; // Kelvins
static const double FrictionInPerPs = 91.; // collisions per
picosecond

60 OPENMM TUTORIALS

static const double SolventDielectric = 80.; // typical for water
static const double SoluteDielectric = 2.; // typical for protein

static const double StepSizeInFs = 2; // integration step
size (fs)
static const double ReportIntervalInFs = 50; // how often to issue
PDB frame (fs)
static const double SimulationTimeInPs = 100; // total simulation
time (ps)

// Decide whether to request energy calculations.
static const bool WantEnergy = true;

// ---
// ATOM AND FORCE FIELD DATA
// ---
// This is not part of OpenMM; just a struct we can use to collect atom
// parameters for this example. Normally atom parameters would come from
the
// force field's parameterization file. We're going to use data in
Angstrom and
// Kilocalorie units and show how to safely convert to OpenMM's internal
unit
// system which uses nanometers and kilojoules.
static struct MyAtomInfo {
 const char* pdb;
 double mass, charge, vdwRadiusInAng, vdwEnergyInKcal,
 gbsaRadiusInAng, gbsaScaleFactor;
 double initPosInAng[3];
 double posInAng[3]; // leave room for runtime state info
} atoms[] = {
// pdb mass charge vdwRad vdwEnergy gbsaRad gbsaScale initPos
{" NA ", 22.99, 1, 1.8680, 0.00277, 1.992, 0.8, 8, 0, 0},
{" CL ", 35.45, -1, 2.4700, 0.1000, 1.735, 0.8, -8, 0, 0},
{" NA ", 22.99, 1, 1.8680, 0.00277, 1.992, 0.8, 0, 9, 0},
{" CL ", 35.45, -1, 2.4700, 0.1000, 1.735, 0.8, 0,-9, 0},
{" NA ", 22.99, 1, 1.8680, 0.00277, 1.992, 0.8, 0, 0,-10},
{" CL ", 35.45, -1, 2.4700, 0.1000, 1.735, 0.8, 0, 0, 10},
{""} // end of list
};

5.4.2 Interface routines

The key to our recommended integration strategy is the interface routines. You will need to

decide what interface routines are required for effective communication between your

existing MD program and OpenMM, but typically there will only be six or seven. In our

example, the following four routines suffice:

OPENMM TUTORIALS 61

• Initialize: Data structures that already exist in your MD program (i.e., force fields,

constraints, atoms in the system) are passed to the Initialize routine, which

makes appropriate calls to OpenMM and then returns a handle to the OpenMM

object that can be used by the existing MD program.

• Terminate: Clean up the heap space allocated by Initialize by passing the

handle to the Terminate routine.

• Advance State: The AdvanceState routine advances the simulation. It requires

that the calling function, the existing MD code, gives it a handle.

• Retrieve State: When you want to do an analysis or generate some kind of report,

you call the RetrieveState routine. You have to give it a handle. It then fills in a

data structure that is defined in the existing MD code, allowing the MD program to

use it in its existing routines without further modification.

Note that these are just descriptions of the routines’ functions—you can call them anything

you like and implement them in whatever way makes sense for your MD code.

In the example code, the four routines performing these functions, plus an opaque data

structure (the handle), would be declared, as shown below. Then, the main program, which

sets up, runs, and reports on the simulation, accesses these routines and the opaque data

structure (in this case, the variable omm). As you can see, it does not have access to any

OpenMM declarations, only to the interface routines that you write so there is no need to

change the build environment.

struct MyOpenMMData;
static MyOpenMMData* myInitializeOpenMM(const MyAtomInfo atoms[],
 double temperature,
 double frictionInPs,
 double solventDielectric,
 double soluteDielectric,
 double stepSizeInFs,
 std::string& platformName);
static void myStepWithOpenMM(MyOpenMMData*, int numSteps);
static void myGetOpenMMState(MyOpenMMData*, bool

wantEnergy,double& time, double& energy,
 MyAtomInfo atoms[]);
static void myTerminateOpenMM(MyOpenMMData*);

62 OPENMM TUTORIALS

// ---
// MAIN PROGRAM
// ---
int main() {
 const int NumReports = (int)(SimulationTimeInPs*1000 /

ReportIntervalInFs + 0.5);
 const int NumSilentSteps = (int)(ReportIntervalInFs / StepSizeInFs +

0.5);

 // ALWAYS enclose all OpenMM calls with a try/catch block to make sure
that
 // usage and runtime errors are caught and reported.
 try {
 double time, energy;
 std::string platformName;

 // Set up OpenMM data structures; returns OpenMM Platform name.
 MyOpenMMData* omm = myInitializeOpenMM(atoms, Temperature,

FrictionInPerPs,SolventDielectric, SoluteDielectric,
 StepSizeInFs, platformName);

 // Run the simulation:
 // (1) Write the first line of the PDB file and the initial

configuration.
 // (2) Run silently entirely within OpenMM between reporting

intervals.
 // (3) Write a PDB frame when the time comes.
 printf("REMARK Using OpenMM platform %s\n",

platformName.c_str());
 myGetOpenMMState(omm, WantEnergy, time, energy, atoms);
 myWritePDBFrame(1, time, energy, atoms);

 for (int frame=2; frame <= NumReports; ++frame) {
 myStepWithOpenMM(omm, NumSilentSteps);
 myGetOpenMMState(omm, WantEnergy, time, energy, atoms);
 myWritePDBFrame(frame, time, energy, atoms);
 }

 // Clean up OpenMM data structures.
 myTerminateOpenMM(omm);

 return 0; // Normal return from main.
 }

 // Catch and report usage and runtime errors detected by OpenMM and
fail.
 catch(const std::exception& e) {
 printf("EXCEPTION: %s\n", e.what());
 return 1;
 }
}

OPENMM TUTORIALS 63

We will examine the implementation of each of the four interface routines and the opaque

data structure (handle) in the sections below.

5.4.2.1 Units

The simple molecular dynamics system described in Section 5.4.1 employs the commonly

used units of angstroms and kcals. These differ from the units and parameters used within

OpenMM (see Section 13.2): nanometers and kilojoules. These differences may be small but

they are critical and must be carefully accounted for in the interface routines.

5.4.2.2 Lennard-Jones potential

The Lennard-Jones potential describes the energy between two identical atoms as the

distance between them varies.

The van der Waals “size” parameter is used to identify the distance at which the energy

between these two atoms is at a minimum (that is, where the van der Waals force is most

attractive). There are several ways to specify this parameter, typically, either as the van der

Waals radius rvdw or as the actual distance between the two atoms dmin (also called rmin),

which is twice the van der Waals radius rvdw. A third way to describe the potential is through

sigma σ, which identifies the distance at which the energy function crosses zero as the atoms

move closer together than dmin. (See Section 14.6.1 for more details about the relationship

between these).

σ turns out to be about 0.89 * dmin, which is close enough to dmin that it makes it hard to

distinguish the two. Be very careful that you use the correct value. In the example below, we

will show you how to use the built-in OpenMM conversion constants to avoid errors.

Lennard-Jones parameters are defined for pairs of identical atoms, but must also be applied

to pairs of dissimilar atoms. That is done by “combining rules” that differ among popular

MD codes. Two of the most common are:

• Lorentz-Berthelot (used by AMBER, CHARMM):

• Jorgensen (used by OPLS):

64 OPENMM TUTORIALS

where r = the effective van der Waals “size” parameter (minimum radius, minimum

distance, or zero crossing (sigma)), and ε = the effective van der Waals energy well depth

parameter, for the dissimilar pair of atoms i and j.

OpenMM only implements Lorentz-Berthelot directly, but others can be implemented using

the CustomNonbondedForce class. (See Section 15.1 for details.)

5.4.2.3 Opaque handle MyOpenMMData

In this example, the handle used by the interface to OpenMM is a pointer to a struct called

MyOpenMMData. The pointer itself is opaque, meaning the calling program has no

knowledge of what the layout of the object it points to is, or how to use it to directly interface

with OpenMM. The calling program will simply pass this opaque handle from one interface

routine to another.

There are many different ways to implement the handle. The code below shows just one

example. A simulation requires three OpenMM objects (a System, a Context, and an

Integrator) and so these must exist within the handle. If other objects were required for a

simulation, you would just add them to your handle; there would be no change in the main

program using the handle.

struct MyOpenMMData {
 MyOpenMMData() : system(0), context(0), integrator(0) {}
 ~MyOpenMMData() {delete system; delete context; delete integrator;}
 OpenMM::System* system;
 OpenMM::Context* context;
 OpenMM::Integrator* integrator;
};

In addition to establishing pointers to the required three OpenMM objects, MyOpenMMData

has a constructor MyOpenMMData() that sets the pointers for the three OpenMM objects to

zero and a destructor ~MyOpenMMData() that (in C++) gives the heap space back. This was

done in-line in the HelloArgon program, but we recommend you use something like the

method here instead.

OPENMM TUTORIALS 65

5.4.2.4 myInitializeOpenMM

The myInitializeOpenMM function takes the data structures and simulation parameters

from the existing MD code and returns a new handle that can be used to do efficient

computations with OpenMM. It also returns the platformName so the calling program

knows what platform (e.g., CUDA, OpenCL, Reference) was used.

static MyOpenMMData*
myInitializeOpenMM(const MyAtomInfo atoms[],
 double temperature,
 double frictionInPs,
 double solventDielectric,
 double soluteDielectric,
 double stepSizeInFs,
 std::string& platformName)

This initialization routine is very similar to the HelloArgon example program, except that

objects are created and put in the handle. For instance, just as in the HelloArgon program,

the first step is to load the OpenMM plug-ins, so that the program will run on the best

performing platform that is available. Then, a System is created and assigned to the handle

omm. Similarly, forces are added to the System which is already in the handle.

// Load all available OpenMM plugins from their default location.
OpenMM::Platform::loadPluginsFromDirectory
 (OpenMM::Platform::getDefaultPluginsDirectory());

// Allocate space to hold OpenMM objects while we're using them.
MyOpenMMData* omm = new MyOpenMMData();

// Create a System and Force objects within the System. Retain a reference
// to each force object so we can fill in the forces. Note: the OpenMM
// System takes ownership of the force objects;don't delete them yourself.
omm->system = new OpenMM::System();
OpenMM::NonbondedForce* nonbond = new OpenMM::NonbondedForce();
OpenMM::GBSAOBCForce* gbsa = new OpenMM::GBSAOBCForce();
omm->system->addForce(nonbond);
omm->system->addForce(gbsa);

// Specify dielectrics for GBSA implicit solvation.
gbsa->setSolventDielectric(solventDielectric);
gbsa->setSoluteDielectric(soluteDielectric);

In the next step, atoms are added to the System within the handle, with information about

each atom coming from the data structure that was passed into the initialization function

from the existing MD code. As shown in the HelloArgon program, both the System and the

66 OPENMM TUTORIALS

forces need information about the atoms. For those unfamiliar with the C++ Standard

Template Library, the push_back function called at the end of this code snippet just adds

the given argument to the end of a C++ “vector” container.

// Specify the atoms and their properties:
// (1) System needs to know the masses.
// (2) NonbondedForce needs charges,van der Waals properties(in MD
units!).
// (3) GBSA needs charge, radius, and scale factor.
// (4) Collect default positions for initializing the simulation later.
std::vector<Vec3> initialPosInNm;
for (int n=0; *atoms[n].pdb; ++n) {
 const MyAtomInfo& atom = atoms[n];

 omm->system->addParticle(atom.mass);

 nonbond->addParticle(atom.charge,
 atom.vdwRadiusInAng * OpenMM::NmPerAngstrom
 * OpenMM::SigmaPerVdwRadius,
 atom.vdwEnergyInKcal * OpenMM::KJPerKcal);

 gbsa->addParticle(atom.charge,
 atom.gbsaRadiusInAng * OpenMM::NmPerAngstrom,
 atom.gbsaScaleFactor);

 // Convert the initial position to nm and append to the array.
 const Vec3 posInNm(atom.initPosInAng[0] * OpenMM::NmPerAngstrom,
 atom.initPosInAng[1] * OpenMM::NmPerAngstrom,
 atom.initPosInAng[2] * OpenMM::NmPerAngstrom);
 initialPosInNm.push_back(posInNm);

Units: Here we emphasize the need to pay special attention to the units. As mentioned

earlier, the existing MD code in this example uses units of angstroms and kcals, but

OpenMM uses nanometers and kilojoules. So the initialization routine will need to convert

the values from the existing MD code into the OpenMM units before assigning them to the

OpenMM objects.

In the code above, we have used the unit conversion constants that come with OpenMM

(e.g., OpenMM::NmPerAngstrom) to perform these conversions. Combined with the

naming convention of including the units in the variable name (e.g., initPosInAng), the

unit conversion constants are useful reminders to pay attention to units and minimize

errors.

OPENMM TUTORIALS 67

Finally, the initialization routine creates the Integrator and Context for the simulation.

Again, note the change in units for the arguments! The routine then gets the platform that

will be used to run the simulation and returns that, along with the handle omm, back to the

calling function.

// Choose an Integrator for advancing time, and a Context connecting the
// System with the Integrator for simulation. Let the Context choose the
// best available Platform. Initialize the configuration from the default
// positions we collected above. Initial velocities will be zero but could
// have been set here.
omm->integrator = new OpenMM::LangevinIntegrator(temperature,

frictionInPs,
stepSizeInFs *
OpenMM::PsPerFs);

omm->context = new OpenMM::Context(*omm->system, *omm->integrator);
omm->context->setPositions(initialPosInNm);

platformName = omm->context->getPlatform().getName();
return omm;

5.4.2.5 myGetOpenMMState

The myGetOpenMMState function takes the handle and returns the time, energy, and data

structure for the atoms in a way that the existing MD code can use them without

modification.

static void
myGetOpenMMState(MyOpenMMData* omm, bool wantEnergy,
 double& timeInPs, double& energyInKcal,

 MyAtomInfo atoms[])

Again, this is another interface routine in which you need to be very careful of your units!

Note the conversion from the OpenMM units back to the units used in the existing MD code.

int infoMask = 0;
infoMask = OpenMM::State::Positions;
if (wantEnergy) {
 infoMask += OpenMM::State::Velocities; // for kinetic energy (cheap)
 infoMask += OpenMM::State::Energy; // for pot. energy (more
expensive)
}
// Forces are also available (and cheap).

const OpenMM::State state = omm->context->getState(infoMask);

68 OPENMM TUTORIALS

timeInPs = state.getTime(); // OpenMM time is in ps already

// Copy OpenMM positions into atoms array and change units from nm to
Angstroms.
const std::vector<Vec3>& positionsInNm = state.getPositions();
for (int i=0; i < (int)positionsInNm.size(); ++i)
 for (int j=0; j < 3; ++j)
 atoms[i].posInAng[j] = positionsInNm[i][j] *
OpenMM::AngstromsPerNm;

// If energy has been requested, obtain it and convert from kJ to kcal.
energyInKcal = 0;
if (wantEnergy)
 energyInKcal = (state.getPotentialEnergy() + state.getKineticEnergy())
 * OpenMM::KcalPerKJ;

5.4.2.6 myStepWithOpenMM

The myStepWithOpenMM routine takes the handle, uses it to find the Integrator, and then

sets the number of steps for the Integrator to take. It does not return any values.

static void
myStepWithOpenMM(MyOpenMMData* omm, int numSteps) {
 omm->integrator->step(numSteps);
}

5.4.2.7 myTerminateOpenMM

The myTerminateOpenMM routine takes the handle and deletes all the components, e.g., the

Context and System, cleaning up the heap space.

static void
myTerminateOpenMM(MyOpenMMData* omm) {
 delete omm;
}

5.5 HelloEthane Program

The HelloEthane program simulates ethane (H3-C-C-H3) in a vacuum. It is structured

similarly to the HelloSodiumChloride example, but includes bonded forces (bond stretch,

bond angle bend, dihedral torsion). In setting up these bonded forces, the program

illustrates some of the other inconsistencies in definitions and units that you should watch

out for.

OPENMM TUTORIALS 69

The bonded forces are added to the system within the initialization interface routine, similar

to how the non-bonded forces were added in the HelloSodiumChloride example:

// Create a System and Force objects within the System. Retain a reference
// to each force object so we can fill in the forces. Note: the System
owns
// the force objects and will take care of deleting them; don't do it
yourself!
OpenMM::System& system = *(omm->system = new
OpenMM::System());
OpenMM::NonbondedForce& nonbond = *new
OpenMM::NonbondedForce();
OpenMM::HarmonicBondForce& bondStretch = *new
OpenMM::HarmonicBondForce();
OpenMM::HarmonicAngleForce& bondBend = *new
OpenMM::HarmonicAngleForce();
OpenMM::PeriodicTorsionForce& bondTorsion = *new
OpenMM::PeriodicTorsionForce();
 system.addForce(&nonbond);
 system.addForce(&bondStretch);
 system.addForce(&bondBend);
 system.addForce(&bondTorsion);

Constrainable and non-constrainable bonds: In the initialization routine, we also

set up the bonds. If constraints are being used, then we tell the System about the

constrainable bonds:

 std::vector< std::pair<int,int> > bondPairs;
 for (int i=0; bonds[i].type != EndOfList; ++i) {
 const int* atom = bonds[i].atoms;
 const BondType& bond = bondType[bonds[i].type];

 if (UseConstraints && bond.canConstrain) {
 system.addConstraint(atom[0], atom[1],

 bond.nominalLengthInAngstroms
 * OpenMM::NmPerAngstrom);

 }

Otherwise, we need to give the HarmonicBondForce the bond stretch parameters.

Warning: The constant used to specify the stiffness may be defined differently between the

existing MD code and OpenMM. For instance, AMBER uses the constant, as given in the

harmonic energy term kx2, where the force is 2kx (k = constant and x = distance). OpenMM

wants the constant, as used in the force term kx (with energy 0.5 * kx2). So a factor of 2

70 OPENMM TUTORIALS

must be introduced when setting the bond stretch parameters in an OpenMM system using

data from an AMBER system.

 bondStretch.addBond(atom[0], atom[1],

 bond.nominalLengthInAngstroms
 * OpenMM::NmPerAngstrom,
 bond.stiffnessInKcalPerAngstrom2
 * 2 * OpenMM::KJPerKcal
 * OpenMM::AngstromsPerNm *

OpenMM::AngstromsPerNm);

Non-bond exclusions: Next, we deal with non-bond exclusions. These are used for pairs

of atoms that appear close to one another in the network of bonds in a molecule. For atoms

that close, normal non-bonded forces do not apply or are reduced in magnitude. First, we

create a list of bonds to generate the non-bond exclusions:

 bondPairs.push_back(std::make_pair(atom[0], atom[1]));

OpenMM’s non-bonded force provides a convenient routine for creating the common

exceptions. These are: (1) for atoms connected by one bond (1-2) or connected by just one

additional bond (1-3), Coulomb and van der Waals terms do not apply; and (2) for atoms

connected by three bonds (1-4), Coulomb and van der Waals terms apply but are reduced by

a force-field dependent scale factor. In general, you may introduce additional exceptions,

but the standard ones suffice here and in many other circumstances.

// Exclude 1-2, 1-3 bonded atoms from nonbonded forces, and scale down 1-4
bonded atoms.
nonbond.createExceptionsFromBonds(bondPairs, Coulomb14Scale,
LennardJones14Scale);

// Create the 1-2-3 bond angle harmonic terms.
for (int i=0; angles[i].type != EndOfList; ++i) {
 const int* atom = angles[i].atoms;
 const AngleType& angle = angleType[angles[i].type];

// See note under bond stretch above regarding the factor of 2 here.
bondBend.addAngle(atom[0],atom[1],atom[2],

angle.nominalAngleInDegrees *
OpenMM::RadiansPerDegree,
angle.stiffnessInKcalPerRadian2 * 2 *
OpenMM::KJPerKcal);

}

// Create the 1-2-3-4 bond torsion (dihedral) terms.
for (int i=0; torsions[i].type != EndOfList; ++i) {
 const int* atom = torsions[i].atoms;

OPENMM TUTORIALS 71

 const TorsionType& torsion = torsionType[torsions[i].type];
 bondTorsion.addTorsion(atom[0],atom[1],atom[2],atom[3],
 torsion.periodicity,
 torsion.phaseInDegrees * OpenMM::RadiansPerDegree,
 torsion.amplitudeInKcal * OpenMM::KJPerKcal);
}

The rest of the code is similar to the HelloSodiumChloride example and will not be covered

in detail here. Please refer to the program HelloEthane.cpp itself, which is well-commented,

for additional details.

6 Platform-Specific

Properties

When creating a Context, you can specify values for properties specific to a particular

Platform. This is used to control how calculations are done in ways that are outside the

scope of the generic OpenMM API.

To do this, pass both the Platform object and a map of property values to the Context

constructor:

Platform& platform = Platform::getPlatformByName("OpenCL");

map<string, string> properties;

properties["OpenCLDeviceIndex"] = "1";

Context context(system, integrator, platform, properties);

After a Context is created, you can use the Platform’s getPropertyValue() method to

query the values of properties.

6.1 OpenCL Platform

The OpenCL Platform recognizes the following Platform-specific properties:

• OpenCLPlatformIndex: When multiple OpenCL implementations are installed on

your computer, this is used to select which one to use. The value is the zero-based

index of the platform (in the OpenCL sense, not the OpenMM sense) to use, in the

order they are returned by the OpenCL platform API. This is useful, for example, in

selecting whether to use a GPU or CPU based OpenCL implementation.

PLATFORM-SPECIFIC PROPERTIES 73

• OpenCLDeviceIndex: When multiple OpenCL devices are available on your

computer, this is used to select which one to use. The value is the zero-based index of

the device to use, in the order they are returned by the OpenCL device API.

The OpenCL Platform also supports parallelizing a simulation across multiple GPUs. To do

that, set the OpenCLDeviceIndex property to a comma separated list of values. For example,

properties["OpenCLDeviceIndex"] = "0,1";

This tells it use both devices 0 and 1, splitting the work between them.

6.2 CUDA Platform

The CUDA Platform recognizes the following Platform-specific properties:

• CudaDevice: When multiple CUDAdevices are available on your computer, this is

used to select which one to use. The value is the zero-based index of the device to

use, in the order they are returned by the CUDA API.

• CudaUseBlockingSync: This is used to control how the CUDA runtime synchronizes

between the CPU and GPU. If this is set to “true” (the default), CUDA will allow the

calling thread to sleep while the GPU is performing a computation, allowing the CPU

to do other work. If it is set to “false”, CUDA will spin-lock while the GPU is working.

This can improve performance slightly, but also prevents the CPU from doing

anything else while the GPU is working.

7 Using OpenMM with

Software Written in

Languages Other than C++

Although the native OpenMM API is object-oriented C++ code, it is possible to directly

translate the interface so that it is callable from C, Fortran 95, and Python with no

substantial conceptual changes. We have developed a straightforward mapping for these

languages that, while perhaps not the most elegant possible, has several advantages:

• Almost all documentation, training, forum discussions, and so on are equally useful

to users of all these languages. There are syntactic differences of course, but all the

important concepts remain unchanged.

• We are able to generate the C, Fortran, and Python APIs from the C++ API.

Obviously, this reduces development effort, but more importantly it means that the

APIs are likely to be error-free and are always available immediately when the native

API is updated.

• Because OpenMM performs expensive operations “in bulk” there is no noticeable

overhead in accessing these operations through the C, Fortran, or Python APIs.

• All symbols introduced to a C or Fortran program begin with the prefix “OpenMM_”

so will not interfere with symbols already in use.

Availability of APIs in other languages: All necessary C and Fortran bindings are built in to

the main OpenMM library; no separate library is required. The Python wrappers are

contained in a module that is distributed with OpenMM and that can be installed by

executing its setup.py script in the standard way.

USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER THAN C++ 75

(This doesn’t apply to most users: if you are building your own OpenMM from source using

CMake and want the API bindings generated, be sure to enable the

OPENMM_BUILD_C_AND_FORTRAN_WRAPPERS option for C and Fortran, or

OPENMM_BUILD_PYTHON_WRAPPERS option for Python. The Python module will be placed

in a subdirectory of your main build directory called “python”)

Documentation for APIs in other languages: While there is extensive Doxygen

documentation available for the C++ API, there is no separate on-line documentation for the

C and Fortran API. Instead, you should use the C++ documentation, employing the

mappings described here to figure out the equivalent syntax in C or Fortran. Documentation

for the Python API is included in the module through the standard help and pydoc

interfaces.

7.1 C API

Before you start writing your own C program that calls OpenMM, be sure you can build and

run the two C examples that are supplied with OpenMM (see Chapter 5). These can be built

from the supplied Makefile on Linux and Mac, or supplied NMakefile and Visual Studio

solution files on Windows.

The example programs are HelloArgonInC and HelloSodiumChlorideInC. The argon

example serves as a quick check that your installation is set up properly and you know how

to build a C program that is linked with OpenMM. It will also tell you whether OpenMM is

executing on the GPU or is running (slowly) on the Reference platform. However, the argon

example is not a good template to follow for your own programs. The sodium chloride

example, though necessarily simplified, is structured roughly in the way we recommended

you set up your own programs to call OpenMM. Please be sure you have both of these

programs executing successfully on your machine before continuing.

7.1.1 Mechanics of using the C API

The C API is generated automatically from the C++ API when OpenMM is built. There are

two resulting components: C bindings (functions to call), and C declarations (in a header

file). The C bindings are small extern (global) interface functions, one for every method of

76 USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER THAN C++

every OpenMM class, whose signatures (name and arguments) are predictable from the class

name and method signatures. There are also “helper” types and functions provided for the

few cases in which the C++ behavior cannot be directly mapped into C. These interface and

helper functions are compiled in to the main OpenMM library so there is nothing special you

have to do to get access to them.

In the /include subdirectory of your OpenMM installation directory, there is a machine-

generated header file OpenMMCWrapper.h that should be #included in any C program that

is to make calls to OpenMM functions. That header contains declarations for all the

OpenMM C interface functions and related types. Note that if you follow our suggested

structure, you will not need to include this file in your main() compilation unit but can

instead use it only in a local file that you write to provide a simple interface to your existing

code (see Chapter 5).

7.1.2 Mapping from the C++ API to the C API

The automated generator of the C “wrappers” follows the translation strategy shown in Table

7.1. The idea is that if you see the construct on the left in the C++ API documentation, you

should interpret it as the corresponding construct on the right in C. Please look at the

supplied example programs to see how this is done in practice.

C++	 API	 declaration	 Equivalent	 in	 C	 API	
namespace OpenMM:: OpenMM_ (prefix)
class class OpenMM::ClassName typedef OpenMM_ClassName
constant OpenMM::RadiansPerDeg OpenMM_RadiansPerDeg (static constant)
class enum OpenMM::State::Positions OpenMM_State_Positions

constructor
new OpenMM::ClassName() OpenMM_ClassName*

 OpenMM_ClassName_create()
(addl. constructors are _create_2(), etc.)

destructor
OpenMM::ClassName* thing;
delete thing;

OpenMM_ClassName* thing;
OpenMM_ClassName_destroy(thing);

class method
OpenMM::ClassName* thing;
thing->someName(args)

OpenMM_ClassName* thing;
OpenMM_ClassName_someName
 (thing, args)

Boolean type
& constants

bool
true, false

OpenMM_Boolean
OpenMM_True (1), OpenMM_False (0)

string std::string char*
3-vector OpenMM::Vec3 typedef OpenMM_Vec3

arrays

std::vector<std::string>
std::vector<double>
std::vector<Vec3>
std::vector<std::pair<int,int>>
std::map<std::string,double>

typedef OpenMM_StringArray
typedef OpenMM_DoubleArray
typedef OpenMM_Vec3Array
typedef OpenMM_BondArray
typedef OpenMM_ParameterArray

USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER THAN C++ 77

Table	 7.1:	 Default	 mapping	 of	 objects	 from	 the	 C++	 API	 to	 the	 C	 API	

There are some exceptions to the generic translation rules shown in the table; they are

enumerated in the next section. And because there are no C++ API equivalents to the array

types, they are described in detail below.

7.1.3 Exceptions

These two methods are handled somewhat differently in the C API than in the C++ API:

• OpenMM::Context::getState()

The C version, OpenMM_Context_getState(), returns a pointer to a heap

allocated OpenMM_State object. You must then explicitly destroy this State object

when you are done with it, by calling OpenMM_State_destroy().

• OpenMM::Platform::loadPluginsFromDirectory()

The C version OpenMM_Platform_loadPluginsFromDirectory() returns a

heap-allocated OpenMM_StringArray object containing a list of all the file names

that were successfully loaded. You must then explicitly destroy this StringArray

object when you are done with it. Do not ignore the return value; if you do you’ll have

a memory leak since the StringArray will still be allocated.

(In the C++ API, the equivalent methods return references into existing memory rather than

new heap-allocated memory, so the returned objects do not need to be destroyed.)

7.1.4 OpenMM_Vec3 helper type

Unlike the other OpenMM objects which are opaque and manipulated via pointers, the C

API provides an explicit definition for the C OpenMM_Vec3 type that is compatible with the

OpenMM::Vec3 type. The definition of OpenMM_Vec3 is:

typedef struct {double x, y, z;} OpenMM_Vec3;

You can work directly with the individual fields of this type from your C program if you want.

For convenience, a scale() function is provided that creates a new OpenMM_Vec3 from an

old one and a scale factor:
OpenMM_Vec3 OpenMM_Vec3_scale(const OpenMM_Vec3 vec, double scale);

78 USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER THAN C++

7.1.5 Array helper types

C++ has built-in container types std::vector and std::map which OpenMM uses to

manipulate arrays of objects. These don’t have direct equivalents in C, so we supply special

array types for each kind of object for which OpenMM creates containers. These are: string,

double, Vec3, bond, and parameter map. See Table 7.1 for the names of the C types for each

of these object arrays. Each of the array types provides these functions (prefixed by

OpenMM_ and the actual Thing name), with the syntax shown conceptually since it differs

slightly for each kind of object.

ThingArray* create(int size) Create a heap-allocated array of Things, with
space pre-allocated to hold size of them.
You can start at size==0 if you want since
these arrays are dynamically resizeable.

void destroy(ThingArray*) Free the heap space that is currently in use
for the passed-in array of Things.

int getSize(ThingArray*) Return the current number of Things in this
array. This means you can get() and set()
elements up to getSize()-1.

void resize(ThingArray*,int size) Change the size of this array to the indicated
value which may be smaller or larger than
the current size. Existing elements remain in
their same locations as long as they still fit.

void append(ThingArray*,Thing) Add a Thing to the end of the array,
increasing the array size by one. The precise
syntax depends on the actual type of Thing;
see below.

void set(ThingArray*,
 int index,Thing)

Store a copy of Thing in the indicated
element of the array (indexed from 0). The
array must be of length at least index+1;
you can’t grow the array with this function.

Thing get(ThingArray*,
 int index)

Retrieve a particular element from the array
(indexed from 0). (For some Things the
value is returned in arguments rather than as
the function return.)

Table	 7.2:	 Generic	 description	 of	 array	 helper	 types	

Here are the exact declarations with deviations from the generic description noted, for each

of the array types.

7.1.5.1 OpenMM_DoubleArray

OpenMM_DoubleArray*
 OpenMM_DoubleArray_create(int size);

USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER THAN C++ 79

void OpenMM_DoubleArray_destroy(OpenMM_DoubleArray*);
int OpenMM_DoubleArray_getSize(const OpenMM_DoubleArray*);
void OpenMM_DoubleArray_resize(OpenMM_DoubleArray*, int size);
void OpenMM_DoubleArray_append(OpenMM_DoubleArray*, double value);
void OpenMM_DoubleArray_set(OpenMM_DoubleArray*, int index, double value);
double OpenMM_DoubleArray_get(const OpenMM_DoubleArray*, int index);

7.1.5.2 OpenMM_StringArray

OpenMM_StringArray*
 OpenMM_StringArray_create(int size);
void OpenMM_StringArray_destroy(OpenMM_StringArray*);
int OpenMM_StringArray_getSize(const OpenMM_StringArray*);
void OpenMM_StringArray_resize(OpenMM_StringArray*, int size);
void OpenMM_StringArray_append(OpenMM_StringArray*, const char* string);
void OpenMM_StringArray_set(OpenMM_StringArray*, int index, const char* string);
const char* OpenMM_StringArray_get(const OpenMM_StringArray*, int index);

7.1.5.3 OpenMM_Vec3Array

OpenMM_Vec3Array*
 OpenMM_Vec3Array_create(int size);
void OpenMM_Vec3Array_destroy(OpenMM_Vec3Array*);
int OpenMM_Vec3Array_getSize(const OpenMM_Vec3Array*);
void OpenMM_Vec3Array_resize(OpenMM_Vec3Array*, int size);
void OpenMM_Vec3Array_append(OpenMM_Vec3Array*, const OpenMM_Vec3 vec);
void OpenMM_Vec3Array_set(OpenMM_Vec3Array*, int index, const OpenMM_Vec3 vec);
const OpenMM_Vec3*
 OpenMM_Vec3Array_get(const OpenMM_Vec3Array*, int index);

7.1.5.4 OpenMM_BondArray

Note that bonds are specified by pairs of integers (the atom indices). The get() method

returns those in a pair of final arguments rather than as its functional return.
OpenMM_BondArray*
 OpenMM_BondArray_create(int size);
void OpenMM_BondArray_destroy(OpenMM_BondArray*);
int OpenMM_BondArray_getSize(const OpenMM_BondArray*);
void OpenMM_BondArray_resize(OpenMM_BondArray*, int size);
void OpenMM_BondArray_append(OpenMM_BondArray*, int particle1, int particle2);
void OpenMM_BondArray_set(OpenMM_BondArray*, int index, int particle1, int particle2);
void OpenMM_BondArray_get(const OpenMM_BondArray*, int index,
 int* particle1, int* particle2);

7.1.5.5 OpenMM_ParameterArray

OpenMM returns references to internal ParameterArrays but does not support user-

created ParameterArrays, so only the get() and getSize() functions are available.

Also, note that since this is actually a map rather than an array, the “index” is the name of

the parameter rather than its ordinal.

int OpenMM_ParameterArray_getSize(const OpenMM_ParameterArray*);
double OpenMM_ParameterArray_get(const OpenMM_ParameterArray*, const char* name);

80 USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER THAN C++

7.2 Fortran 95 API

Before you start writing your own Fortran program that calls OpenMM, be sure you can

build and run the two Fortran examples that are supplied with OpenMM (see Chapter 5).

These can be built from the supplied Makefile on Linux and Mac, or supplied NMakefile

and Visual Studio solution files on Windows.

The example programs are HelloArgonInFortran and

HelloSodiumChlorideInFortran. The argon example serves as a quick check that your

installation is set up properly and you know how to build a Fortran program that is linked

with OpenMM. It will also tell you whether OpenMM is executing on the GPU or is running

(slowly) on the Reference platform. However, the argon example is not a good template to

follow for your own programs. The sodium chloride example, though necessarily simplified,

is structured roughly in the way we recommended you set up your own programs to call

OpenMM. Please be sure you have both of these programs executing successfully on your

machine before continuing.

7.2.1 Mechanics of using the Fortran API

The Fortran API is generated automatically from the C++ API when OpenMM is built. There

are two resulting components: Fortran bindings (subroutines to call), and Fortran

declarations of types and subroutines (in the form of a Fortran 95 module file). The Fortran

bindings are small interface subroutines, one for every method of every OpenMM class,

whose signatures (name and arguments) are predictable from the class name and method

signatures. There are also “helper” types and subroutines provided for the few cases in which

the C++ behavior cannot be directly mapped into Fortran. These interface and helper

subroutines are compiled in to the main OpenMM library so there is nothing special you

have to do to get access to them.

Because Fortran is case-insensitive, calls to Fortran subroutines (however capitalized) are

mapped by the compiler into all-lowercase or all-uppercase names, and different compilers

use different conventions. The automatically-generated OpenMM Fortran “wrapper”

subroutines, which are generated in C and thus case-sensitive, are provided in two forms for

compatibility with the majority of Fortran compilers, including Intel Fortran and gfortran.

USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER THAN C++ 81

The two forms are: (1) all-lowercase with a trailing underscore, and (2) all-uppercase

without a trailing underscore. So regardless of the Fortran compiler you are using, it should

find a suitable subroutine to call in the main OpenMM library.

In the /include subdirectory of your OpenMM installation directory, there is a machine-

generated module file OpenMMFortranModule.f90 that must be compiled along with any

Fortran program that is to make calls to OpenMM functions. (You can look at the Makefile

or Visual Studio solution file provided with the OpenMM examples to see how to build a

program that uses this module file.) This module file contains definitions for two modules:

MODULE OpenMM_Types and MODULE OpenMM; however, only the OpenMM module will

appear in user programs (it references the other module internally). The modules contain

declarations for all the OpenMM Fortran interface subroutines, related types, and

parameters (constants). Note that if you follow our suggested structure, you will not need to

use the OpenMM module in your main() compilation unit but can instead use it only in a

local file that you write to provide a simple interface to your existing code (see Chapter 5).

7.2.2 Mapping from the C++ API to the Fortran API

The automated generator of the Fortran “wrappers” follows the translation strategy shown in

Table 7.3. The idea is that if you see the construct on the left in the C++ API documentation,

you should interpret it as the corresponding construct on the right in Fortran. Please look at

the supplied example programs to see how this is done in practice. Note that all subroutines

and modules are declared with “implicit none”, meaning that the type of every symbol is

declared explicitly and should not be inferred from the first letter of the symbol name.

82 USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER THAN C++

C++	 API	 declaration	 Equivalent	 in	 Fortran	 API	
namespace OpenMM:: OpenMM_ (prefix)
class class OpenMM::ClassName type (OpenMM_ClassName)
constant OpenMM::RadiansPerDeg parameter (OpenMM_RadiansPerDeg)
class enum OpenMM::State::Positions parameter (OpenMM_State_Positions)

constructor
new OpenMM::ClassName() type (OpenMM_ClassName) thing

call OpenMM_ClassName_create(thing)
(addl. constructors are _create_2(), etc.)

destructor
OpenMM::ClassName* thing;
delete thing;

type (OpenMM_ClassName) thing
call OpenMM_ClassName_destroy(thing)

class
method

OpenMM::ClassName* thing;
thing->someName(args)

type (OpenMM_ClassName) thing
call OpenMM_ClassName_someName
 (thing, args)

Boolean
type
& constants

bool
true, false

integer*4
parameter (OpenMM_True=1)
parameter (OpenMM_False=0)

string std::string character(*)
3-vector OpenMM::Vec3 real*8 vec(3)

arrays

std::vector<std::string>
std::vector<double>
std::vector<Vec3>
std::vector<std::pair<int,int>>
std::map<std::string,double>

type (OpenMM_StringArray)
type (OpenMM_DoubleArray)
type (OpenMM_Vec3Array)
type (OpenMM_BondArray)
type (OpenMM_ParameterArray)

Table	 7.3:	 Default	 mapping	 of	 objects	 from	 the	 C++	 API	 to	 the	 Fortran	 API	

Because there are no C++ API equivalents to the array types, they are described in detail

below.

7.2.3 OpenMM_Vec3 helper type

Unlike the other OpenMM objects which are opaque and manipulated via pointers, the

Fortran API uses an ordinary real*8(3) array in place of the OpenMM::Vec3 type. The

You can work directly with the individual elements of this type from your Fortran program if

you want. For convenience, a scale() function is provided that creates a new Vec3 from an

old one and a scale factor:

subroutine OpenMM_Vec3_scale(vec, scale, result)
real*8 vec(3), scale, result(3)

No explicit type(OpenMM_Vec3) is provided in the Fortran API since it is not needed.

7.2.4 Array helper types

C++ has built-in container types std::vector and std::map which OpenMM uses to

manipulate arrays of objects. These don’t have direct equivalents in Fortran, so we supply

USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER THAN C++ 83

special array types for each kind of object for which OpenMM creates containers. These are:

string, double, Vec3, bond, and parameter map. See Table 7.3 for the names of the Fortran

types for each of these object arrays. Each of the array types provides these functions

(prefixed by OpenMM_ and the actual Thing name), with the syntax shown conceptually since

it differs slightly for each kind of object.

subroutine create(array,size)
type (OpenMM_ThingArray) array
integer*4 size

Create a heap-allocated array of Things, with
space pre-allocated to hold size of them.
You can start at size==0 if you want since
these arrays are dynamically resizeable.

subroutine destroy(array)
type (OpenMM_ThingArray) array

Free the heap space that is currently in use
for the passed-in array of Things.

function getSize(array)
type (OpenMM_ThingArray) array
integer*4 getSize

Return the current number of Things in this
array. This means you can get() and set()
elements up to getSize().

subroutine resize(array,size)
type (OpenMM_ThingArray) array
integer*4 size

Change the size of this array to the indicated
value which may be smaller or larger than
the current size. Existing elements remain in
their same locations as long as they still fit.

subroutine append(array,elt)
type (OpenMM_ThingArray) array
Thing elt

Add a Thing to the end of the array,
increasing the array size by one. The precise
syntax depends on the actual type of Thing;
see below.

subroutine set(array,index,elt)
type (OpenMM_ThingArray) array
integer*4 index
Thing elt

Store a copy of elt in the indicated element
of the array (indexed from 1). The array must
be of length at least index; you can’t grow
the array with this function.

subroutine get(array,index,elt)
type (OpenMM_ThingArray) array
integer*4 index
Thing elt

Retrieve a particular element from the array
(indexed from 1). Some Things require more
than one argument to return.

Table	 7.4:	 Generic	 description	 of	 array	 helper	 types	

Here are the exact declarations with deviations from the generic description noted, for each

of the array types.

7.2.4.1 OpenMM_DoubleArray

 subroutine OpenMM_DoubleArray_create(array, size)
 integer*4 size
 type (OpenMM_DoubleArray) array
 subroutine OpenMM_DoubleArray_destroy(array)
 type (OpenMM_DoubleArray) array

84 USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER THAN C++

 function OpenMM_DoubleArray_getSize(array)
 type (OpenMM_DoubleArray) array
 integer*4 OpenMM_DoubleArray_getSize
 subroutine OpenMM_DoubleArray_resize(array, size)
 type (OpenMM_DoubleArray) array
 integer*4 size
 subroutine OpenMM_DoubleArray_append(array, value)
 type (OpenMM_DoubleArray) array
 real*8 value
 subroutine OpenMM_DoubleArray_set(array, index, value)
 type (OpenMM_DoubleArray) array
 integer*4 index
 real*8 value
 subroutine OpenMM_DoubleArray_get(array, index, value)
 type (OpenMM_DoubleArray) array
 integer*4 index
 real*8 value

7.2.4.2 OpenMM_StringArray

 subroutine OpenMM_StringArray_create(array, size)
 integer*4 size
 type (OpenMM_StringArray) array
 subroutine OpenMM_StringArray_destroy(array)
 type (OpenMM_StringArray) array
 function OpenMM_StringArray_getSize(array)
 type (OpenMM_StringArray) array
 integer*4 OpenMM_StringArray_getSize
 subroutine OpenMM_StringArray_resize(array, size)
 type (OpenMM_StringArray) array
 integer*4 size
 subroutine OpenMM_StringArray_append(array, str)
 type (OpenMM_StringArray) array
 character(*) str
 subroutine OpenMM_StringArray_set(array, index, str)
 type (OpenMM_StringArray) array
 integer*4 index
 character(*) str
 subroutine OpenMM_StringArray_get(array, index, str)
 type (OpenMM_StringArray) array
 integer*4 index
 character(*)str

7.2.4.3 OpenMM_Vec3Array

 subroutine OpenMM_Vec3Array_create(array, size)
 integer*4 size
 type (OpenMM_Vec3Array) array
 subroutine OpenMM_Vec3Array_destroy(array)
 type (OpenMM_Vec3Array) array
 function OpenMM_Vec3Array_getSize(array)
 type (OpenMM_Vec3Array) array
 integer*4 OpenMM_Vec3Array_getSize
 subroutine OpenMM_Vec3Array_resize(array, size)
 type (OpenMM_Vec3Array) array
 integer*4 size
 subroutine OpenMM_Vec3Array_append(array, vec)
 type (OpenMM_Vec3Array) array
 real*8 vec(3)
 subroutine OpenMM_Vec3Array_set(array, index, vec)
 type (OpenMM_Vec3Array) array
 integer*4 index
 real*8 vec(3)
 subroutine OpenMM_Vec3Array_get(array, index, vec)
 type (OpenMM_Vec3Array) array
 integer*4 index
 real*8 vec (3)

USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER THAN C++ 85

7.2.4.4 OpenMM_BondArray

Note that bonds are specified by pairs of integers (the atom indices). The get() method

returns those in a pair of final arguments rather than as its functional return.

 subroutine OpenMM_BondArray_create(array, size)
 integer*4 size
 type (OpenMM_BondArray) array
 subroutine OpenMM_BondArray_destroy(array)
 type (OpenMM_BondArray) array
 function OpenMM_BondArray_getSize(array)
 type (OpenMM_BondArray) array
 integer*4 OpenMM_BondArray_getSize
 subroutine OpenMM_BondArray_resize(array, size)
 type (OpenMM_BondArray) array
 integer*4 size
 subroutine OpenMM_BondArray_append(array, particle1, particle2)
 type (OpenMM_BondArray) array
 integer*4 particle1, particle2
 subroutine OpenMM_BondArray_set(array, index, particle1, particle2)
 type (OpenMM_BondArray) array
 integer*4 index, particle1, particle2
 subroutine OpenMM_BondArray_get(array, index, particle1, particle2)
 type (OpenMM_BondArray) array
 integer*4 index, particle1, particle2

7.2.4.5 OpenMM_ParameterArray

OpenMM returns references to internal ParameterArrays but does not support user-

created ParameterArrays, so only the get() and getSize() functions are available.

Also, note that since this is actually a map rather than an array, the “index” is the name of

the parameter rather than its ordinal.

 function OpenMM_ParameterArray_getSize(array)
 type (OpenMM_ParameterArray) array
 integer*4 OpenMM_ParameterArray_getSize
 subroutine OpenMM_ParameterArray_get(array, name, param)
 type (OpenMM_ParameterArray) array
 character(*) name
 character(*) param

7.3 Python API

7.3.1 Installing the Python API

There are currently two types of packages for installing the Python API. One contains

wrapper source code for Unix-type machines (including Linux and Mac operating systems).

You will need a C++ compiler to install it using this type of package. The other type of

86 USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER THAN C++

installation package is a binary package which contains compiled wrapper code for Windows

machines (no compilers are needed to install binary packages).

7.3.1.1 Installing on Windows

OpenMM only works with Python 2.6 or 2.7, so make sure that one of those versions is

installed before you try installing. For Python installation packages and instructions, go to

http://python.org. Note that if you have a 64-bit machine, you should still install the 32-bit

version of Python since the OpenMM Python API binary is 32-bit. We suggest that you

install Python using the default options.

Double click on the Python API Installer icon, located in the top level directory for the

OpenMM installation (by default, this is C:\Program Files\OpenMM). This will install the

OpenMM package into the Python installation area. If you have more than one Python

installation, you will be asked which Python to use—make sure to select Python 2.6 or 2.7.

7.3.1.2 Installing on Linux and Mac

Make sure you have Python 2.6 or 2.7 installed. For Python installation packages and

instructions, go to http://python.org. If you do not have the correct Python version, install a

valid version using the default options. Most versions of Linux and Mac OS X have a

suitable Python preinstalled. You can check by typing “python --version” in a terminal

window.

You must have a C++ compiler to install the OpenMM Python API. If you are using a Mac,

install Apple's Xcode development tools (http://developer.apple.com/TOOLS/Xcode) to get

the needed compiler. On other Unix-type systems, install gcc-c++ (version 4.0 or later).

The install.sh script installs the Python API automatically as part of the installation process,

so you probably already have it installed. If for some reason you need to install it manually,

you can do that with the setup.py script included with OpenMM. Before executing this

script, you must set two environment variables: OPENMM_INCLUDE_PATH must point to the

directory containing OpenMM header files, and OPENMM_LIB_PATH must point to the

directory containing OpenMM library files. Assuming OpenMM is installed in the default

location (/usr/local/openmm), you would type the following commands. Note that if you

USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER THAN C++ 87

are using the system Python (as opposed to a locally installed version), you may need to run

the Python installation process as a superuser using the sudo command:

export OPENMM_INCLUDE_PATH=/usr/local/openmm/include
export OPENMM_LIB_PATH=/usr/local/openmm/lib
python setup.py build
python setup.py install OR sudo python setup.py install

If you are compiling OpenMM from source, you can also install by building the

“PythonInstall” target:

make PythonInstall OR sudo make PythonInstall

7.3.2 Mapping from the C++ API to the Python API

The Python API follows the C++ API as closely as possible. There are three notable

differences:

1) The getState() method in the Context class takes Pythonic-type arguments to

indicate which state variables should be made available. For example:

myContext.getState(getEnergy=True, getForce=False, …)

2) Wherever the C++ API uses references to return multiple values from a method, the

Python API returns a tuple. For example, in C++ you would query a

HarmonicBondForce for a bond’s parameters as follows:

int particle1, particle2;

double length, k;

f.getBondParameters(i, particle1, particle2, length, k);

In Python, the equivalent code is:

[particle1, particle2, length, k] = f.getBondParameters(i)

3) Unlike C++, the Python API accepts and returns quantities with units attached to

most values (see the “Units and dimensional analysis” section below for details). In

88 USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER THAN C++

short, this means that while values in C++ have implicit units, the Python API

returns objects that have values and explicit units.

7.3.3 Mechanics of using the Python API

When using the Python API, be sure to include the OpenMM and GPU support libraries in

your library path, just as you would for a C++ application. This is set with the

LD_LIBRARY_PATH environment variable on Linux, DYLD_LIBRARY_PATH on Mac, or

PATH on Windows. See sections 3.3 and 3.4 for details.

The Python API is contained in the simtk.openmm package, while the units code is

contained in the simtk.units package. (The application layer, described in the Application

Guide, is contained in the simtk.openmm.app package.) A program using it will therefore

typically begin

import simtk.openmm as mm

import simtk.unit as unit

Creating and using OpenMM objects is then done exactly as in C++:

system = mm.System()

nb = mm.NonbondedForce()

nb.setNonbondedMethod(mm.NonbondedForce.CutoffNonPeriodic)

nb.setCutoffDistance(1.2*unit.nanometer)

system.addForce(nb)

Note that when setting the cutoff distance, we explicitly specify that it is in nanometers. We

could just as easily specify it in different units:

nb.setCutoffDistance(12*unit.angstrom)

The use of units in OpenMM is discussed in the next section.

USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER THAN C++ 89

7.3.4 Units and dimensional analysis

7.3.4.1 Why does the Python API include units?

The C++ API for OpenMM uses an implicit set of units for physical quantities such as

lengths, masses, energies, etc. These units are based on daltons, nanometers, and

picoseconds for the mass, length, and time dimensions, respectively. When using the C++

API, it is very important to ensure that quantities being manipulated are always expressed in

terms of these units. For example, if you read in a distance in Angstroms, you must multiply

that distance by a conversion factor to turn it into nanometers before using it in the C++

API. Such conversions can be a source of tedium and errors. This is true in many areas of

scientific programming. Units confusion was blamed for the loss of the Mars Climate

Orbiter spacecraft in 1999, at a cost of more than $100 million. Units were introduced in the

Python API to minimize the chance of such errors.

The Python API addresses the potential problem of conversion errors by using quantities

with explicit units. If a particular distance is expressed in Angstroms, the Python API will

know that it is in Angstroms. When the time comes to call the C++ API, it will understand

that the quantity must be converted to nanometers. You, the programmer, must declare

upfront that the quantity is in Angstrom units, and the API will take care of the details from

then on. Using explicit units is a bit like brushing your teeth: it requires some effort upfront,

but it probably saves you trouble in the long run.

7.3.4.2 Quantities, units, and dimensions

The explicit unit system is based on three concepts: Dimensions, Units, and Quantities.

Dimensions are measurable physical concepts such as mass, length, time, and energy.

Energy is actually a composite dimension based on mass, length, and time.

A Unit defines a linear scale used to measure amounts of a particular physical Dimension.

Examples of units include meters, seconds, joules, inches, and grams.

A Quantity is a specific amount of a physical Dimension. An example of a quantity is “0.63

kilograms”. A Quantity is expressed as a combination of a value (e.g., 0.63), and a Unit (e.g.,

kilogram). The same Quantity can be expressed in different Units.

90 USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER THAN C++

The set of BaseDimensions defined in the simtk.unit module includes:

• mass

• length

• time

• temperature

• amount

• charge

• luminous intensity

• angle

These are not precisely the same list of base dimensions used in the SI unit system. SI

defines “current” (charge per time) as a base unit, while simtk.unit uses “charge”. And

simtk.unit treats angle as a dimension, even though angle quantities are often considered

dimensionless. In this case, we choose to err on the side of explicitness, particularly because

interconversion of degrees and radians is a frequent source of unit headaches.

7.3.4.3 Units examples

Many common units are defined in the simtk.unit module.

from simtk.unit import nanometer, angstrom, dalton

Sometimes you don’t want to type the full unit name every time, so you can assign it a

shorter name using the as functionality:

from simtk.unit import nanometer as nm

New quantities can be created from a value and a unit. You can use either the multiply

operator (‘*’) or the explicit Quantity constructor:

from simk.unit import nanometer, Quantity

construct a Quantity using the multiply operator

bond_length = 1.53 * nanometer

USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER THAN C++ 91

equivalently using the explicit Quantity constructor

bond_length = Quantity(1.53, nanometer)

or more verbosely

bond_length = Quantity(value=1.53, unit=nanometer)

7.3.4.4 Arithmetic with units

Addition and subtraction of quantities is only permitted between quantities that share the

same dimension. It makes no sense to add a mass to a distance. If you attempt to add or

subtract two quantities with different dimensions, an exception will be raised. This is a good

thing; it helps you avoid errors.

x = 5.0*dalton + 4.3*nanometer; # error

Addition or subtraction of quantities with the same dimension, but different units, is fine,

and results in a new quantity created using the correct conversion factor between the units

used.

x = 1.3*nanometer + 5.6*angstrom; # OK, result in nanometers

Quantities can be added and subtracted. Naked Units cannot.

Multiplying or dividing two quantities creates a new quantity with a composite dimension.

For example, dividing a distance by a time results in a velocity.

from simtk.unit import kilogram, meter, second

a = 9.8 * meter / second**2; # acceleration

m = 0.36 * kilogram; # mass

F = m * a; # force in kg*m/s**2

Multiplication or division of two Units results in a composite Unit.

mps = meter / second

92 USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER THAN C++

Unlike amount (moles), angle (radians) is arguably dimensionless. But

simtk.unit treats angle as another dimension. Use the trigonometric functions from the

simtk.unit module (not those from the Python math module!) when dealing with Units and

Quantities.

from simtk.unit import sin, cos, acos

x = sin(90.0*degrees)

angle = acos(0.68); # returns an angle quantity (in radians)

The method pow() is a built-in Python method that works with Quantities and Units.

area = pow(3.0*meter, 2)

or, equivalently

area = (3.0*meter)**2

or

area = 9.0*(meter**2)

The method sqrt() is not as built-in as pow(). Do not use the Python math.sqrt()

method with Units and Quantities. Use the simtk.unit.sqrt() method instead:

from simtk.unit import sqrt

side_length = sqrt(4.0*meter**2)

7.3.4.5 Atomic scale mass and energy units are “per amount”

Mass and energy units at the atomic scale are specified “per amount” in the simtk.unit

module. Amount (mole) is one of the seven fundamental dimensions in the SI unit system.

The atomic scale mass unit, dalton, is defined as grams per mole. The dimension of dalton is

therefore mass/amount, instead of simply mass. Similarly, the atomic scale energy unit,

kilojoule_per_mole (and kilocalorie_per_mole) has “per amount” in its dimension. Be

careful to always use “per amount” mass and energy types at the atomic scale, and your

dimensional analysis should work out properly.

USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER THAN C++ 93

The energy unit kilocalories_per_mole does not have the same Dimension as the

macroscopic energy unit kilocalories. Molecular scientists sometimes use the word

"kilocalories" when they mean "kilocalories per mole". Use "kilocalories per mole" or

"kilojoules per mole" for molecular energies. Use "kilocalories" for the metabolic energy

content of your lunch. The energy unit kilojoule_per_mole happens to go naturally with the

units nanometer, picoseconds, and dalton. This is because 1 kilojoule/mole happens to be

equal to 1 gram-nanometer2/mole-picosecond2, and is therefore consistent with the

molecular dynamics unit system used in the C++ OpenMM API.

 These "per mole" units are what you should be using for molecular calculations, as long as

you are using SI / cgs / calorie sorts of units.

7.3.4.6 SI prefixes

Many units with SI prefixes such as “milligram” (milli) and “kilometer” (kilo) are provided in

the simtk.unit module. Others can be created by multiplying a prefix symbol by a non-

prefixed unit:

from simtk.unit import mega, kelvin

megakelvin = mega * kelvin

t = 8.3 * megakelvin

Only grams and meters get all of the SI prefixes (from yotto-(10-24) to yotta-(1024))

automatically.

7.3.4.7 Converting to different units

Use the Quantity.in_units_of() method to create a new Quantity with different units.

from simtk.unit import nanosecond, fortnight

x = (175000*nanosecond).in_units_of(fortnight)

When you want a plain number out of a Quantity, use the value_in_unit() method:

94 USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER THAN C++

from simtk.unit import femtosecond, picosecond

t = 5.0*femtosecond

t_just_a_number = t.value_in_unit(picoseconds)

Using value_in_unit() puts the responsibility for unit analysis back into your hands, and

it should be avoided. It is sometimes necessary, however, when you are called upon to use a

non-units-aware Python API.

7.3.4.8 Lists, tuples, numpy arrays, and Units

Units can be attached to containers of numbers to create a vector quantity. The simtk.unit

module overloads the __setitem__ and __getitem__ methods for these containers to

ensure that Quantities go in and out.

>>> s2 = [[1,2,3],[4,5,6]] * centimeter

>>> print s2

[[1, 2, 3], [4, 5, 6]] cm

>>> print s2 / millimeter

[[10.0, 20.0, 30.0], [40.0, 50.0, 60.0]]

>>> import numpy

>>> a = Quantity(numpy.array([1,2,3]), centimeter)

>>> print a

[1 2 3] cm

>>> print a / millimeter

[10. 20. 30.]

Converting a whole list to different units at once is much faster than converting each element

individually. For example, consider the following code that prints out the position of every

particle in a State, as measured in Angstroms:

for v in state.getPositions():

 print v.value_in_unit(angstrom)

USING OPENMM WITH SOFTWARE WRITTEN IN LANGUAGES OTHER THAN C++ 95

This can be rewritten as follows:

for v in state.getPositions().value_in_unit(angstrom):

 print v

The two versions produce identical results, but the second one will run faster, and therefore

is preferred.

8 Examples of OpenMM

Integration

8.1 GROMACS

GROMACS is a large, complex application written primarily in C. The considerations

involved in adapting it to use OpenMM are likely to be similar to those faced by developers

of other existing applications. The GROMACS version with OpenMM integrated can be

downloaded from http://simtk.org/home/openmm (click on the “Downloads” link).

The first principle we followed in adapting GROMACS was to keep all OpenMM-related code

isolated to just a few files, while modifying as little of the existing GROMACS code as

possible. This minimized the risk of breaking existing parts of the code, while making the

OpenMM-related parts as easy to work with as possible. It also minimized the need for C

code to invoke the C++ API. (This would not be an issue if we used the OpenMM C API

wrapper, but that is less convenient than the C++ API, and placing all of the OpenMM calls

into separate C++ files solves the problem equally well.)

In fact, only a single existing source file (md.c) was modified, while two new files

(md_openmm.h and md_openmm.cpp) were added. md_openmm.h defines just four

functions which encapsulate all of the interaction between OpenMM and the rest of

GROMACS:

openmm_init(): As arguments, this function takes pointers to lots of internal GROMACS

data structures that describe the simulation to be run. It creates a System, Integrator, and

Context based on them, then returns an opaque reference to an object containing them.

That reference is an input argument to all of the other functions defined in md_openmm.h.

This allows information to be passed between those functions without exposing it to the rest

of GROMACS.

EXAMPLES OF OPENMM INTEGRATION 97

openmm_take_one_step(): This calls step(1) on the Integrator that was created by

openmm_init().

openmm_copy_state(): This calls getState() on the Context that was created by

openmm_init(), and then copies information from the resulting State into various

GROMACS data structures. This function is how state data generated by OpenMM is passed

back to GROMACS for output, analysis, etc.

openmm_cleanup(): This is called at the end of the simulation. It deletes all the objects

that were created by openmm_init().

This set of functions defines the interactions between GROMACS and OpenMM: copying

information from the application to OpenMM, performing integration, copying information

from OpenMM back to the application, and freeing resources at the end of the simulation.

While the details of their implementations are specific to GROMACS, this overall pattern is

fairly generic. A similar set of functions can be used for many other applications as well.

8.2 PyMD

PyMD is a lightweight Python library for molecular dynamics (MD) simulation and analysis.

It was created with several goals in mind.

First and foremost, doing a molecular dynamics simulation should be straightforward—

simple tasks should have simple solutions. The simplicity of PyMD arises by pairing the

OpenMM library with Python, Numpy, and PyTables. Python-Numpy-Scipy provides easy

and efficient array data types and numerical algorithms. PyTables allows high performance

file input-output using an underlying HDF5 format.

Second, the infrastructure for doing and analyzing molecular dynamics should be written as

a high-quality, well-documented, and user-extensible library. In particular, the barrier to

adding new features must be small. PyMD is a companion library for OpenMM, providing

many features necessary for running molecular dynamics but which are beyond the scope of

98 EXAMPLES OF OPENMM INTEGRATION

OpenMM, for example, ForceField, Conformation, Trajectory, and Topology classes for

facilitating the MD pipeline.

Third, MD must be integrated with software for interactive data analysis. The Python-

Numpy tool chain provides an obvious answer to this requirement. PyMD stores numerical

data as Numpy arrays. Thus, no special data containers are necessary, and you can directly

interact with both the input and output of your molecular dynamics simulations. PyMD is

particularly well-suited for ipython-matploblib, an interactive environment for numerical

computation and plotting, but you can easily use the analysis environment of your choosing.

Finally, MD must be fast. OpenMM provides excellent performance for all MD calculations.

Similarly, the high-performance Numpy library ensures that analysis code runs efficiently;

often, Numpy functions are comparable in speed to functions written in C or Fortran.

8.2.1 OpenMM integration

The majority of the PyMD code has no awareness of OpenMM. For instance, the

Conformation, Trajectory, ForceField, and Topology objects are all OpenMM-agnostic

classes used to store the information necessary for biomolecular modeling. All the

interactions that PyMD has with OpenMM occur via the PyMD Simulation class.

By pushing all the OpenMM calls to one class, two design goals were attained. First, changes

to OpenMM calls can be easily made as new OpenMM features become available. Second,

the Conformation, ForceField, and Topology classes are independent of OpenMM and can be

useful for tasks that do not involve OpenMM—for instance, PDB renaming, RMSD

calculation, and sequence mutation.

Below are the Python calls in a typical PyMD example, where a user wants to perform

molecular dynamics of a protein:

EXAMPLES OF OPENMM INTEGRATION 99

import FF

import Simulation

Amber03=FF.ForceField.LoadFromHDF("Amber03.h5")

C1=FF.Conformation.LoadFromPDB("Protein.pdb")

T1=FF.Topology.CreateTopologyFromConformation(Amber03,C1)

P1=Simulation.SimulationParameters.Langevin()

S1=Simulation.Simulation.CreateSimulation(T1,C1,P1)

S1.Step(1000)

As mentioned above, OpenMM calls only occur within member functions of the Simulation

class (in this example, S1). In this case, there are two functions that interact with OpenMM:

CreateSimulation() and Step().

The call Step(1000) does 1000 steps of integration. The CreateSimulation function,

as the name implies, sets up the simulation. It requires three inputs: a topology,

conformation, and simulation parameters. The topology (T1) contains all the information

about the bonds and forces in a system. The conformation (C1) contains much the same

information as a PDB file, providing OpenMM with the three-dimensional coordinates of the

atoms in the system. Finally, the simulation parameters (P1), obtained with a call to

SimulationParameters.Langevin(), provide values needed by OpenMM to simulate

the system of interest (e.g., temperature, friction, timestep).

To call the OpenMM functions, PyMD uses the PyOpenMM wrappers. We can examine the

implementation of the CreateSimulation function using these wrappers in more detail

below.

When CreateSimulation is called to create a Simulation (S1), PyMD uses the PyOpenMM

wrappers to find the appropriate platform, create the desired forces, and initialize an

OpenMM System, similar to the steps in the HelloArgon tutorial example (see Section 5.3).

The majority of the code in this function involves iterating over the entries in the topology

and creating the appropriate OpenMM Forces. For example, the section of

CreateSimulation that adds the Periodic Torsion forces is included below. The effect of

the code is to add the appropriate force for each 4-tuple of atoms (a0, a1, a2, a3) involved in

a Periodic Torsion Force.

100 EXAMPLES OF OPENMM INTEGRATION

 if Parameters["AddPeriodic"]==True:

 Sim.system.addForce(Sim.PeriodicTorsionForce)

 for i in range(len(Topology["Impropers"])):

 a0=int(Topology["Impropers"][i][0])

 a1=int(Topology["Impropers"][i][1])

 a2=int(Topology["Impropers"][i][2])

 a3=int(Topology["Impropers"][i][3])

 period=int(Topology["ImproperPn"][i])

 phase=float(Topology["ImproperPhase"][i])

 kd=float(Topology["ImproperKd"][i])

Sim.PeriodicTorsionForce.addTorsion(a0,a1,a2,a3,period,phase*pi/180.,kd)

The member variables Sim.system and Sim.PeriodicTorsionForce are both

OpenMM objects. As seen in the code, the actual interactions with OpenMM are simple and

few.

9 Testing and Validation of

OpenMM

Three types of validation of OpenMM have been performed:

• Unit tests: Unit tests are provided with each major force and integrator class and

other auxiliary functions (e.g., the random number generator). The unit tests

exercise the basic functionality of each class to probe for problems; a separate unit

test is available for each of the different platforms. Typically, but not exclusively,

these tests use simple model systems comprised of a small number of particles.

• System tests: In contrast to the unit tests, the system tests are performed on a

collection of biomolecules. The types of tests included for these systems are checks

for consistency between the forces for the different platforms (CPU vs. GPU), energy-

force consistency (outlined below), and tests for energy conservation for Verlet

integrators, thermostability for stochastic integrators, and checks that constraints are

satisfied within the prescribed tolerance.

• Direct comparison between GROMACS and OpenMM forces: The third

type of validation performed was a direct comparison, when possible, of the

individual forces computed in GROMACS with those in OpenMM for a collection of

biomolecules.

	

Each type of test is outlined in greater detail below; a discussion of the current status of the

tests is then given.

	

102 TESTING AND VALIDATION OF OPENMM

9.1 Description of Tests

9.1.1 Unit tests

The unit tests are available in the source code and can be run by the user. See Section 4

(Compiling OpenMM from Source Code) for details on compiling the tests.

If a test is run and no problems are detected, the program will return ‘Done’. If an error is

detected, an exception is thrown, and an appropriate message is printed. The error message

should be examined carefully since the discrepancy is often close to the allowed tolerance,

and hence may be acceptable.

9.1.2 System tests

Systems tests were performed to validate: 1) the consistency of the calculated forces across

platforms, including non-Fermi and Fermi boards for CUDA and OpenCL, 2) the consistency

of energy and force for each force class on each platform and board type, and 3) energy

conservation and thermostability on the CUDA and OpenCL platforms. The tests were run

on 20 different systems employing an implicit solvent model, including a DNA and RNA

system; the system sizes ranged from 75-6450 particles; for explicit solvent tests, 5 systems

were tested with sizes ranging from 910-173181 particles. Tests involving the OpenCL

platform were only done for NVIDIA boards; tests using AMD boards will be performed once

the required software is available.

Force consistency between platforms: The first set of system tests was a comparison of the

forces between the Reference (CPU) platform and the CUDA (GPU) platform and the

Reference platform and the OpenCL (GPU) platform. These tests consist of building an

OpenMM System with a single force class or multiple force classes and then checking that

the calculated force components agree to a specified tolerance. Multiple force classes are

used for testing the GBSA force since for the GPU platforms the nonbonded and GBSA terms

are folded into a single kernel and as a result the individual forces cannot be separated.

Energy-force consistency on a platform: The second set of tests was a check that the energy

and force are consistent for each force class on each platform. The test protocol is as follows:

TESTING AND VALIDATION OF OPENMM 103

• Compute the force (F0 = -∇V|r = r0) and potential energy (V0) for a given

configuration

• Perturb the coordinates in the direction of the force F0 by an amount ε:

 Δr = -F0*ε/ |F0|, where ε ~ 10-2 – 10-6 nm

• Calculate the potential energy V at the perturbed configuration

 V = V0 + ∇V⋅Δr + …

 V - V0 ≅ -F0⋅Δr = -F0⋅(- ε *F0/|F0|)

 [V-V0]/ ε ≅ |F0|

Here Δr is the perturbation in the coordinates of the system. The relative difference between

[V-V0]/ ε and |F0| should be within a specified tolerance.

Energy conservation and thermostability: The focus of the third set of tests is on the

integrators. The systems are first equilibrated for 30 ps. A simulation is then run for 1 ns,

accumulating the total energy for Verlet integrators and the kinetic energy for the Langevin

(LangevinIntegrator and VariableLangevinIntegrator) every ps. Each time the energies are

calculated a check is made that any constraints are satisfied to within the desired tolerance.

When the runs have completed, the energy drift is computed in units of kBT/degrees-of-

freedom/ns for the Verlet integrators. For the stochastic integrators, the deviation of the

average temperature from the user-specified temperature is monitored. Note that this third

set of tests was only carried out on the CUDA and OpenCL platforms, since running the tests

on the Reference platform would require substantial computational effort.

9.1.3 Direct comparisons between GROMACS and OpenMM forces

A direct comparison between the forces computed in GROMACS 4.5 and OpenMM 4.0 for a

variety of biomolecules was made. The comparisons include the following forces and

conditions:

• HarmonicBond

• HarmonicAngle

• PeriodicTorsion

• GBSA OBC implicit solvent

104 TESTING AND VALIDATION OF OPENMM

Because of the usage of charge groups in GROMACS and their absence in OpenMM, the

neighbor lists are in general different for the nonbonded interactions (including Ewald and

PME) for the two applications. Hence detailed comparisons of the calculated forces are not

possible. For reference, the nonbonded forces for one system were compared using a cutoff

much greater than the system size and in a second comparison with a cutoff of 1nm.

9.2 Test Results

9.2.1 Unit tests

The unit tests should pass, although some of the tests applied to the LangevinIntegrator,

VariableLangevinIntegrator, and BrownianIntegrator test are stochastic and may

occasionally fail. In some cases, a test may fail, but only marginally since the calculated value

is just outside the specified range of acceptable values. For these cases, you must decide if

the difference is significant.

9.2.2 System tests

A concise summary of the results is presented below to provide estimates of the order of

magnitude of differences observed. The full results for the system tests are too numerous to

delineate.

Force consistency across Reference, CUDA and OpenCL platforms: The summary of these

system tests are given in Table 9.1 (Reference, CUDA) and Table 9.2 (Reference and

OpenCL) below. The Average Relative Difference column is the weighted average over all

systems with the weight set to the number of particles in the system. The maximum relative

difference reported is 2.0*|FReference – FCuda |/(|FReference| + |FCuda |), where Fi is the force on

platform i, and the difference is the maximum observed over all systems. The norm of the

force entry with the maximum observed relative difference is also provided.

	

	

	 	

TESTING AND VALIDATION OF OPENMM 105

Force Average Relative

Difference

Max Relative

Difference

Force Norm w/ Max

Relative Difference

HarmonicBond1 1.982e-05 1.414e+00 1.361e-02

HarmonicAngle1 1.153e-05 4.366e-02 1.662e-01

PeriodicTorsion1 1.506e-05 2.548e-01 2.089e-03

RB Torsion1 3.878e-06 5.811e-02 6.048e-03

CustomBond1 1.982e-05 1.414e+00 1.361e-02

CustomAngle1 1.154e-05 4.364e-02 1.662e-01

CustomTorsion1 1.506e-05 2.548e-01 2.089e-03

Nonbonded no cutoff1 7.375e-07 1.291e-04 1.110e+01

Nonbonded/cutoff/non periodic2 4.753e-07 4.163e-05 1.440e+02

Nonbonded/cutoff/periodic2 4.801e-07 4.289e-05 1.383e+02

Ewald2 2.174e-06 2.633e-04 2.774e+01

PME2 3.681e-06 7.006e-04 2.249e+01

CustomNonbonded no cutoff2 9.593e-07 4.823e-05 7.821e+01

CustomNonbonded/cutoff/non periodic2 9.945e-07 1.393e-03 5.171e+02

CustomNonbonded/cutoff/periodic2 1.168e-06 2.010e-03 2.968e+02

OBC/no cutoff1 3.041e-06 2.468e-04 4.810e+01

OBC/cutoff/non periodic1 1.995e-06 9.733e-03 7.641e+01

OBC/cutoff/periodic1 1.447e-06 4.038e-03 2.265e+02

Table	 9.1:	 	 Summary	 of	 force	 consistency	 across	 CUDA	 and	 Reference	 platforms.	 	
The	 Max	 Relative	 Difference	 reported	 is	 2.0*|FReference	 –	 FCuda	 |/(|FReference|	 +	 |FCuda	
|),	 where	 Fi	 is	 the	 force	 on	 platform	 i,	 	 and	 is	 the	 maximum	 observed	 over	 all	
systems.	 The	 average	 relative	 difference	 is	 that	 over	 all	 systems	 weighted	 by	 the	
number	 of	 particles	 in	 the	 system.	 CustomGbsaForce	 is	 not	 available	 for	 the	 CUDA	
platform.	 	
1Tested	 on	 1PLX(75),*	 ala10(112),	 bench10(247),	 villin(582),	 bench80(598),	 bench2(616),	
bench0(627),	 bench3(629),	 bench4(629),	 bench1(634),	 bench81(634),	 dna(758),	 bpti(854),	
lambda(1254),	 lyso(1961),	 bench102(2150),	 tna(2444),	 proteinAmber(3120),	 spectrin(5078),	
bench101(6450)	
2Tested	 on	 ala10(910),*	 bpti(8018),	 lambda(8133),	 villin(10461),	 dna(19046),	 tna(90968).	 	 The	
173,181	 particle	 system	 (a	 box	 of	 water)	 did	 not	 run	 on	 CUDA	 due	 to	 memory	 constraints.	

 *The	 number	 in	 parentheses	 following	 the	 system	 names	 is	 the	 number	 of	 particles	 in	 the	 system.	

106 TESTING AND VALIDATION OF OPENMM

Force Average Relative

Difference

Max Relative

Difference

Force Norm w/ Max

Relative Difference

HarmonicBond1 1.982e-05 1.414e+00 1.361e-02

HarmonicAngle1 1.154e-05 4.364e-02 1.662e-01

PeriodicTorsion1 1.504e-05 2.548e-01 2.089e-03

RB Torsion1 3.868e-06 5.588e-02 6.055e-03

CustomBond1 1.982e-05 1.414e+00 1.361e-02

CustomAngle1 1.154e-05 4.364e-02 1.662e-01

CustomTorsion1 1.504e-05 2.548e-01 2.089e-03

Nonbonded no cutoff1 7.273e-07 1.284e-04 1.110e+01

Nonbonded/cutoff/non periodic2 4.758e-07 4.312e-05 1.440e+02

Nonbonded/cutoff/periodic2 4.801e-07 4.312e-05 1.383e+02

Ewald2 1.925e-06 1.673e-04 2.253e+01

PME2 1.341e-05 1.724e-03 5.311e+01

CustomNonbonded no cutoff2 8.968e-07 9.853e-05 3.747e+02

CustomNonbonded/cutoff/non periodic2 7.662e-07 5.196e-04 7.784e+02

CustomNonbonded/cutoff/periodic2 8.279e-07 2.010e-03 2.968e+02

OBC/no cutoff1 3.085e-06 2.467e-04 4.885e+01

OBC/cutoff/non periodic1 2.034e-06 9.924e-03 7.642e+01

OBC/cutoff/periodic1 1.479e-06 4.038e-03 2.265e+02

CustomGbsa/no cutoff1 7.763e-06 9.392e-04 5.660e-01

CustomGbsa/nonperiodic/cutoff1 2.077e-06 1.148e-04 1.577e+00

CustomGbsa/periodic/cutoff1 2.157e-06 1.226e-04 3.448e-01

Table	 9.2:	 	 Summary	 of	 force	 consistency	 across	 OpenCL	 and	 Reference	 platforms.	 	 The	 Max	
Relative	 Difference	 reported	 is	 2.0*|FReference	 –	 FCuda	 |/(|FReference|	 +	 |FCuda	 |),	 where	 Fi	 is	 the	
force	 on	 platform	 i,	 	 and	 is	 the	 maximum	 observed	 over	 all	 systems.	 The	 average	 relative	
difference	 is	 that	 over	 all	 systems	 weighted	 by	 the	 number	 of	 particles	 in	 the	 system.	 	

1Tested	 on	 1PLX(75),*	 ala10(112),	 bench10(247),	 villin(582),	 bench80(598),	 bench2(616),	 bench0(627),	 bench3(629),	
bench4(629),	 bench1(634),	 bench81(634),	 dna(758),	 bpti(854),	 lambda(1254),	 lyso(1961),	 bench102(2150),	
tna(2444),	 proteinAmber(3120),	 spectrin(5078),	 bench101(6450)	
2Tested	 on	 ala10(910),*	 bpti(8018),	 lambda(8133),	 villin(10461),	 dna(19046),	 tna(90968),	 water(173181)	

*The	 number	 in	 parentheses	 following	 the	 system	 names	 is	 the	 number	 of	 particles	 in	 the	 system.	

TESTING AND VALIDATION OF OPENMM 107

Energy-force consistency: The summary of these system tests are given in Table 9.3

(CUDA) and Table 9.4 (OpenCL) below. The reported maximum relative difference was

calculated as ⏐ [V-V0]/ ε - |F0| ⏐/|F0|, where V is the potential energy of the system, F is the

force, and ε is the perturbation in the coordinates of the system (see test description in

Section 9.1.2 above). The ε used to perturb the coordinates in the calculations was chosen to

minimize the relative difference; the magnitude of the optimal ε ranged from 1.0e-05 to 1.0e-

03. The values shown in Table 9.3 and Table 9.4 are the maximum observed over all

systems running on the CUDA and OpenCL platforms, respectively. The results shown here

were obtained on an NVIDIA GTX 480; similar results were observed on a Tesla C1060. The

results for OBC/cutoffs/non periodic and OBC/cutoffs/periodic are high since no tapering of

the OBC contribution to the energy is applied.

Force
Max Relative

Difference

Log Average Relative

Difference

HarmonicBond1 7.512e-03 6.875e-04

HarmonicAngle1 4.170e-03 3.842e-04

PeriodicTorsion1 1.434e-02 1.261e-03

RB Torsion1 3.540e-03 6.062e-04

Nonbonded no cutoff1 6.831e-04 3.299e-04

Nonbonded/cutoffs/non periodic2 3.916e-03 3.688e-04

Nonbonded/cutoff/periodic2 3.913e-03 6.487e-04

Ewald2 3.918e-03 4.441e-04

PME2 3.918e-03 1.439e-04

OBC/no cutoffs1 1.263e-03 2.110e-04

OBC/cutoffs/non periodic1 1.630e-01 8.766e-04

OB/cutoffs/periodic1 8.054e-02 8.423e-04

Table	 9.3:	 	 Summary	 of	 energy-‐force	 consistency	 for	 the	 CUDA	 platform	 on	 an	 NVIDIA	
GeForce	 GTX	 480	 using	 CUDA	 3.2.	 	 The	 reported	 maximum	 relative	 difference	 was	
calculated	 as	 ⏐[V-‐V0]/	 ε 	 	 -‐	 |F0|⏐/|F0|,	 where	 V	 is	 the	 potential	 energy	 of	 the	 system,	 F	
is	 the	 force,	 and	 ε 	 is	 the	 perturbation	 in	 the	 coordinates	 of	 the	 system.	
1Tested	 on	 1PLX(75),*	 ala10(112),	 bench10(247),	 villin(582),	 bench80(598),	 bench2(616),	 bench0(627),	
bench3(629),	 bench4(629),	 bench1(634),	 bench81(634),	 dna(758),	 bpti(854),	 lambda(1254),	 lyso(1961),	
bench102(2150),	 tna(2444),	 proteinAmber(3120),	 spectrin(5078),	 bench101(6450)	
2Tested	 on	 ala10(910),*	 bpti(8018),	 lambda(8133),	 villin(10461),	 dna(19046),	 tna(90968),	 water(173181)	

	 	 *The	 number	 in	 parentheses	 following	 the	 system	 names	 is	 the	 number	 of	 particles	 in	 the	 system.	

108 TESTING AND VALIDATION OF OPENMM

	

Force
Max Relative

Difference

Log Average Relative

Difference

HarmonicBond1 7.512e-03 6.875e-04

HarmonicAngle1 4.191e-03 3.933e-04

PeriodicTorsion1 1.435e-02 1.102e-03

RB Torsion1 2.890e-03 7.914e-04

Nonbonded no cutoff1 1.101e-03 3.778e-04

Nonbonded/cutoffs/non periodic2 3.834e-03 3.461e-04

Nonbonded/cutoff/periodic2 3.822e-03 4.037e-04

Ewald2 3.867e-03 7.929e-04

PME2 3.886e-03 5.984e-04

OBC/no cutoffs1 6.176e-04 2.031e-04

OBC/cutoffs/non periodic1 1.515e-01 8.700e-04

OB/cutoffs/periodic1 NA 9.354e-04

Table	 9.4:	 	 Summary	 of	 energy-‐force	 consistency	 for	 the	 OpenCL	 platform	 on	 an	
NVIDIA	 GeForce	 GTX	 480	 using	 CUDA	 3.2.	 	 The	 reported	 maximum	 relative	
difference	 was	 calculated	 as	 ⏐[V-‐V0]/	 ε 	 	 -‐	 |F0|⏐/|F0|,	 where	 V	 is	 the	 potential	
energy	 of	 the	 system,	 F	 is	 the	 force,	 and	 ε 	 is	 the	 perturbation	 in	 the	 coordinates	 of	
the	 system.	 	
1Tested	 on	 1PLX(75),*	 ala10(112),	 bench10(247),	 villin(582),	 bench80(598),	 bench2(616),	
bench0(627),	 bench3(629),	 bench4(629),	 bench1(634),	 bench81(634),	 dna(758),	 bpti(854),	
lambda(1254),	 lyso(1961),	 bench102(2150),	 tna(2444),	 proteinAmber(3120),	 spectrin(5078),	
bench101(6450)	
2Tested	 on	 ala10(910),	 bpti(8018),	 lambda(8133),	 villin(10461),	 dna(19046),	 tna(90968),	
water(173181)	

*The	 number	 in	 parentheses	 following	 the	 system	 names	 is	 the	 number	 of	 particles	 in	 the	 system.	

	

Energy conservation and thermostability: For the VerletIntegrator(step size=0.001 ps) and

VariableVerletIntegrator (error tolerance=2.0e-06), the energy drift ranged from 2.0e-03 to

2.0e-02 kT/degrees-of-freedom/ns for both the CUDA and OpenCL platforms for over 50

different runs; in general the smaller systems had a higher drift value. For a specified

temperature of 300 K, the average temperature ranged from [299-312]K for the

LangevinIntegrator (step size=0.001 ps) and VariableLangevinIntegrator (error

tolerance=1.0e-05). Test simulations using the BrownianIntegrator were not performed. No

systemic constraint violations were observed.

TESTING AND VALIDATION OF OPENMM 109

9.2.3 GROMACS-Reference platform differences

The summary of comparisons between GROMACS and the OpenMM Reference platform are

given in Table 9.5 below. The value reported is 2.0*|FOpenMMReference – FGROMACS

|/(|FOpenMMReference| + |FGROMACS|), where Fi is the force computed with software i, and is the

maximum observed over all systems.

Force
Average Relative

Difference

Max Relative

Difference

Force Norm w/

Max Relative

Difference

HarmonicBond 1.658e-04 1.764e-01 1.166e-01

HarmonicAngle 6.347e-05 9.755e-05 1.801e+01

PeriodicTorsion 3.701e-05 1.590e-02 2.087e-01

Nonbonded/cutoff=100

nm/non periodic1

6.125e-07 6.953e-05 1.415e+02

Nonbonded/cutoff=1 nm/non

periodic1

2.468e-02 3.677e-01 1.125e+02

OBC/nonbonded/no cutoffs 3.821e-06 9.755e-05 1.801e+01

Table	 9.5:	 	 Comparison	 of	 forces	 computed	 by	 GROMACS	 versus	 the	 OpenMM	
Reference	 platform.	 	 The	 value	 reported	 is	 2*|FOpenMMReference	 –	 FGROMACS	

|/(|FOpenMMReference|	 +	 |FGROMACS|),	 where	 Fi	 is	 the	 force	 computed	 with	 software	 i,	 	
and	 is	 the	 maximum	 observed	 over	 all	 systems.	 	 The	 test	 systems	 used	 were	
ala10(112),	 bpti(854),	 lyso(1961),	 bench101(6450);	 the	 number	 in	 parentheses	 is	
the	 number	 of	 particles	 in	 the	 system.	 1Tests	 were	 only	 performed	 for	 ala10(4000)	
to	 give	 order	 of	 magnitude	 estimates	 of	 the	 differences;	 as	 noted	 above,	
nonbonded	 forces	 calculated	 with	 cutoffs	 are	 not	 directly	 comparable	 between	
GROMACS	 and	 OpenMM	 due	 to	 the	 usage	 of	 charge	 groups	 in	 building	 neighbor	
lists	 in	 GROMACS.	

9.3 Validation Software

Users have reported instances where all the OpenMM unit tests pass for a given hardware,

software, and operating system setup, but the OpenMM program was clearly giving incorrect

results for simulations of their larger systems. The same molecular system was reported to

run properly for a different hardware/software/operating system combination. As a first

step to help identify these types of situations, we have added a unit test

110 TESTING AND VALIDATION OF OPENMM

(TestCudaUsingParameterFile) that reads an ASCII file containing parameters for a 1254-

atom protein, compares the forces computed with the Reference platform with those using

the CUDA platform, and reports any significant discrepancies. See Chapter 4 (Compiling

OpenMM from Source Code) for details on compiling and running the tests.

A library of routines has also been added to allow users to more easily compare calculations

of the forces on the Reference and CUDA platforms. An example snippet of code using the

library is given below:

#include "libraries/validate/include/ValidateOpenMMForces.h

…

ValidateOpenMMForces validateForce;

validateForce.setLog(stderr); // direct any logging info to stderr

std::string summary; // output string

int misses=validateForce.compareWithReferencePlatform(*context,&summary);

(void)fprintf(stderr,"Misses=%d Summary\n\n%s\n",misses,summary.c_str());

The input to the method validateForce.compareWithReferencePlatform() is an

instance of the OpenMM Context class that is to be tested, and the output is a std::string

containing a summary of the comparisons. The method’s return value is nonzero, if errors

were detected, and otherwise is zero. The comparison method will calculate the forces that

have been registered with the System object associated with the Context object

(HarmonicBond , HarmonicAngle , …) individually and collectively on each platform and

compare the results; the particle coordinates used in the calculations are those specified in

the context via context->setPositions(). The individual forces are compared instead of

just the sum of all forces since problems can sometimes be masked if the magnitude of one

force is significantly larger than other forces. The exceptions to performing the calculations

for individual forces are the implicit solvent forces (GBSAOBCForce and GBVIForce). The

calculations of these forces on the CUDA platform are combined with the nonbonded forces

to reduce the computational time (one less O(N2) loop). As a consequence, only the

combination of the implicit solvent force and the nonbonded forces can be directly

compared. If implicit solvent forces are present, the comparison method will make two

comparisons: the nonbonded alone and nonbonded + implicit solvent forces. In addition to

comparing the forces, the method also checks the energies.

TESTING AND VALIDATION OF OPENMM 111

An example of the output contained in the summary string is given below. The first block

gives the result for the NonbondedForce (Nb), the second block for the combined

NonbondedForce and GBSAOBCForce, …. The last block is a comparison for all the

registered forces (HarmonicAngle, HarmonicBond, Nb, Obc, PeriodicTorsion). An error is

reported for the HarmonicAngle force. Errors are registered if nans or infinities are detected

or if the average of the norm of the two forces and the relative difference between the forces

are greater than a specified tolerance. The default tolerance is 1.0e-02; the tolerance value

may be set via the call validateForce.setForceTolerance(userSpecifiedValue).

The logic used in reporting problems is that significant relative differences in the force

values may be ignored, if the magnitude of the force is small. The primary goal of the library

is to identify cases where the GPU board is giving incorrect values; in general, these will not

be small discrepancies.

 Misses=1 Summary

 Platforms Reference Cuda

 Force Nb

 Tolerance 1.000e-02

 Max Delta 4.671e-03 at index 458

 Max Relative Delta 4.443e-05 at index 1571

 Potential energies relative delta 6.3725e-06 PE[-2.535492e+04 -2.535476e+04]

 Force Nb::Obc

 Tolerance 1.000e-02

 Max Delta 2.798e-02 at index 218

 Max Relative Delta 1.993e-04 at index 1340

 Potential energies relative delta 1.0321e-05 PE[-3.367265e+04 -3.367230e+04]

 Force HarmonicBond

 Tolerance 1.000e-02

 Max Delta 1.141e-02 at index 2104

 Max Relative Delta 4.474e-03 at index 103

 Potential energies relative delta 4.3744e-07 PE[2.094316e+03 2.094315e+03]

112 TESTING AND VALIDATION OF OPENMM

 Force HarmonicAngle

 Tolerance 1.000e-02

 Max Delta 4.137e-03 at index 2230

 Max Relative Delta 1.818e-01 at index 317

 Potential energies relative delta 3.6725e-06 PE[3.239476e+03 3.239464e+03]

 Error 3.17460e-02 at index 408

 norms: [1.16380e-02 1.12743e-02]

 forces: [-8.98444e-03 -3.92734e-04 -7.38707e-03]

 [-8.70368e-03 -3.80461e-04 -7.15622e-03]

 Total errors 1

 Force PeriodicTorsion

 Tolerance 3.000e-01

 Max Delta 6.044e-03 at index 1250

 Max Relative Delta 2.000e+00 at index 1958

 Potential energies relative delta 1.7841e-06 PE[4.226045e+03 4.226052e+03]

 Force

HarmonicAngle::HarmonicBond::Nb::Obc::PeriodicTorsion

 Tolerance 1.000e-02

 Max Delta 2.841e-02 at index 218

 Max Relative Delta 1.420e-04 at index 907

 Potential energies relative delta 1.4185e-05 PE[-2.411281e+04 -2.411247e+04]

10 AMOEBA Plugin

OpenMM 4.0 provides a CUDA platform plugin that implements the AMOEBA polarizable

atomic multipole force field1-2 from Jay Ponder’s lab. A Reference platform plugin is also

provided, but only a subset of the forces has been currently implemented for this platform.

The plugin may be accessed using a modified version of TINKER (referred to as TINKER-

OpenMM here). TINKER-OpenMM can be created from a TINKER package using three files

made available through the OpenMM home page. The plugin can also be accessed through

pyMD. OpenMM AMOEBA force and System objects containing AMOEBA forces can be

serialized.

In the following sections, the individual forces and options available in the plugin are listed,

and the steps required tobuild and use the plugin and TINKER-OpenMM are outlined.

Validation results are also reported. Benchmarks can be found on the OpenMM wiki at

http://wiki.simtk.org/openmm/Benchmarks.

10.1 OpenMM AMOEBA Supported Forces and Options

10.1.1 Supported Forces and Options

The AMOEBA force terms implemented in the CUDA platform are listed in Table 10.1 below

along with the supported and unsupported options. TINKER options that are not supported

for any OpenMM force include the grouping of atoms (e.g., protein chains), the infinite

polymer check, and no exclusion of particles from energy/force calculations

(‘active’/’inactive’ particles). Switching is not applied to any of the long-range interactions.

The virial is not calculated for any force.

All rotation axis types are supported: ‘Z-then-X’, ‘Bisector’, ‘Z-Bisect’, ‘3-Fold’, ‘Z-Only’.

114 AMOEBA PLUGIN

TINKER Force

(key file parameter)
OpenMM Force Option/Note

ebond1(bondterm) AmoebaHarmonicBondForce bndtyp='HARMONIC' supported,

'MORSE' not implemented

Eangle71(angleterm) AmoebaHarmonicAngleForce angtyp='HARMONIC' and 'IN-

PLANE' supported; 'LINEAR' and

'FOURIER' not implemented

etors1a(torsionterm) AmoebaTorsionForce All options implemented; smoothing

version(etors1b) not supported

etortor1(tortorterm) AmoebaTorsionTorsionForce All options implemented

eopbend1(opbendterm) AmoebaOutOfPlaneBendForce opbtyp = 'ALLINGER' implemented;

'W-D-C' not implemented

epitors1(pitorsterm) AmoebaPiTorsionForce All options implemented

estrbnd1(strbndterm) AmoebaStretchBendForce All options implemented

ehal1a(vdwterm) AmoebaVdwForce ehal1b(LIGHTS) not supported; long-

range van der Waals energy

correction unsupported

empole1a(mpoleterm) AmoebaMultipoleForce poltyp = 'MUTUAL', 'DIRECT'

supported

empole1c(mpoleterm)

PME

AmoebaMultipoleForce poltyp = 'MUTUAL', 'DIRECT'

supported; boundary= 'VACUUM'

unsupported

esolv1 (solvateterm) AmoebaWcaDispersionForce,

AmoebaGeneralizedKirkwoodForce

Only born-radius=’grycuk’ and

solvate=’GK’ supported; unsupported

solvate settings: ‘ASP’, ‘SASA’,

‘ONION’, ‘pb’, 'GB-HPMF’, 'Gk-

HPMF’; SASA computation is based

on ACE approximation

eurey1(ureyterm) AmoebaUreyBradleyForce All options implemented

Table	 10.1:	 	 Mapping	 between	 TINKER	 and	 OpenMM	 AMOEBA	 forces	

AMOEBA PLUGIN 115

Some specific details to be aware of are the following:

• Forces available in TINKER but not implemented in the OpenMM AMOEBA plugin

include the following: angle-angle, out-of-plane distance, improper dihedral,

improper torsion, stretch-torsion, charge-charge, atomwise charge-dipole, dipole-

dipole, reaction field, ligand field, restraint, scf molecular orbital calculation; strictly

speaking, these are not part of the AMOEBA force field.

• Implicit solvent is implemented with key file entry ‘solvate GK’. The entry ‘born-

radius OBC’ should also be included; only the ‘OBC’ option for calculating the Born

radii is available in the plugin.

• In TINKER, the nonpolar cavity contribution to the solvation term is calculated using

an algorithm that does not map well to GPUs. Instead the OpenMM plugin uses the

TINKER version of the ACE approximation to estimate the cavity contribution to the

SASA.

• Calculations using the CUDA platform are done in single precision; for the Reference

platform, double precision is used. TINKER uses double precision.

• The TINKER parameter files for the AMOEBA force-field parameters are based on

units of kilocalorie/Å, whereas OpenMM uses units of kilojoules/nanometer; both

TINKER and OpenMM use picoseconds time units. Hence, in mapping the force-field

parameters from TINKER files to OpenMM, many of the parameter values must be

converted to the OpenMM units. The setup methods in the TINKER-OpenMM

application perform the required conversions.

10.1.2 Supported Integrators

In addition to the limitations to the forces outlined above, TINKER-OpenMM can only use

either the ‘Verlet’ or ‘Stochastic’ integrators when the OpenMM plugin is used; an equivalent

to the TINKER ‘Beeman’ integrator is unavailable in OpenMM.

116 AMOEBA PLUGIN

10.2 TINKER-OpenMM

10.2.1 Building TINKER-OpenMM (Linux)

Below are instructions for building TINKER-OpenMM in Linux.

1. To build and install the OpenMM plugin libraries, follow the steps outlined in

Chapter 4 (Compiling OpenMM from Source Code). You will need to set the

following options to ‘ON’ when you run CMake:

i. OPENMM_BUILD_AMOEBA_PLUGIN

ii. OPENMM_BUILD_AMOEBA_CUDA_LIB

iii. OPENMM_BUILD_CUDA_LIB

iv. OPENMM_BUILD_C_AND_FORTRAN_WRAPPERS

2. Download the complete TINKER distribution from http://dasher.wustl.edu/ffe/ and

unzip/untar the file.

3. Obtain the modified TINKER file dynamic.f, the interface file

dynamic_openmm.c and the Makefile from the “Downloads” section of

OpenMM’s homepage (https://simtk.org/home/openmm) and place them in the

TINKER source directory. These files are compatible with TINKER 6.0.4. If you are

using later versions of TINKER, some minor edits may be required to get the

program to compile.

4. In the Makefile, edit the following fields, as needed:

a. TINKERDIR – This should point to the head of the TINKER distribution

directory, e.g., ‘/home/user/tinker-5.1.09’

b. LINKDIR – directory in executable path containing linked copies of the

TINKER executables; typical directory would be ‘/usr/local/bin’

c. CC – This is an added field that should point to the C compiler (e.g.,

‘/usr/bin/gcc’)

AMOEBA PLUGIN 117

d. OpenMM_INSTALL_DIR - This should identify the directory where the

OpenMM files were installed, i.e., the OPENMM_INSTALL_PREFIX setting

when CMake was run in step (1)

5. At the command line, type

make dynamic_openmm.x

to create the executable.

6. Check that the environment variable ‘OPENMM_PLUGIN_DIR’ is set to the

installed plugins directory and that the environment variable ‘LD_LIBRARY_PATH’

includes both the installed lib and plugins directory; for example:

OPENMM_PLUGIN_DIR=/home/usr/install/openmm/lib/plugins

LD_LIBRARY_PATH=/usr/local/cuda/lib64:/home/usr/install/openmm

/lib:/home/usr/install/openmm/lib/plugins

10.2.2 Using TINKER-OpenMM

Run dynamic_openmm.x with the same command-line options as you would dynamic.x.

Consult the TINKER documentation and Table 10.1 for more details.

10.2.2.1 Available outputs

Only the total force and potential energy are returned by TINKER-OpenMM; a breakdown of

the energy and force into individual terms (bond, angle, …), as is done in TINKER, is

unavailable through the OpenMM plugin. Also, the pressure cannot be calculated since the

virial is not calculated in the plugin.

10.2.2.2 Setting the frequency of output data updates

Frequent retrieval of the state information from the GPU board can use up a substantial

portion of the total wall clock time. This is due to the fact that the forces and energies are

recalculated for each retrieval. Hence, if the state information is obtained after every

timestep, the wall clock time will approximately double over runs where the state

information in only gathered infrequently (say every 50-100 timesteps).

Two options are provided for updating the TINKER data structures:

118 AMOEBA PLUGIN

(i) (DEFAULT) If the logical value of ‘oneTimeStepPerUpdate’ in dynamic.f is

true, then a single step is taken and the TINKER data structures are populated at

each step. This option is conceptually simpler and is consistent with the TINKER

md loops; for example, the output from the TINKER subroutine mdstat() will be

accurate for this choice. However, the performance will be degraded since the

forces and energy are recalculated with each call, doubling the required time.

This is the default option.

(ii) If ‘oneTimeStepPerUpdate’ is false, then depending on the values of iprint

(TINKER keyword ‘PRINTOUT’) and iwrite (=dump time/dt), multiple time

steps are taken on the GPU before data is transferred from the GPU to the CPU;

here dump time is the value given to the TINKER command-line query ‘Enter

Time between Dumps in Picoseconds’. Under this option, every iprint and every

iwrite timesteps, the state information will be retrieved. For example if

‘PRINTOUT’ is 10 and iwrite is 15, then the information will be retrieved at time

steps { 10, 15, 20, 30, 40, 45, …}. This option will lead to better performance than

option 1. However, a downside to this approach is that the fluctuation values

printed by the Tinker routine mdstat() will be incorrect.

10.2.2.3 Specify the GPU board to use

To specify a GPU board other than the default, set the environment variable

‘CUDA_DEVICE’ to the desired board id. A line like the following will be printed to stderr

for the setting CUDA_DEVICE=2:

Platform Cuda: setting device id to 2 based on env variable

CUDA_DEVICE.

10.2.2.4 Running comparison tests between TINKER and OpenMM routines

To turn on testing (comparison of forces and potential energy for the initial conformation

calculated using TINKER routines and OpenMM routines), set ‘applyOpenMMTest’ to a

non-zero value in dynamic.f. Note: the program exits after the force/energy comparisons;

it does not execute the main molecular dynamics loop.

AMOEBA PLUGIN 119

Testing individual forces: An example key file for testing the harmonic bond term is as

follows:

parameters /home/user/tinker/params/amoebabio09

verbose

solvate GK

born-radius OBC

polar-eps 0.0001

integrate verlet

bondterm only

For the other covalent and Van der Waals forces, replace the line ‘bondterm only’ above

with the following lines depending on the force to be tested:

angle force: angleterm only

out-of-plane bend: opbendterm only

stretch bend force strbndterm only

pi-torsion force: pitorsterm only

torsion force: torsionterm only

torsion-torsion force: tortorterm only

Urey-Bradley force: ureyterm only

Van der Waals force: vdwterm only

A sample key file for the multipole force with no cutoffs is given below:

parameters /home/user/tinker/params/amoebabio09

verbose

solvate GK

born-radius OBC

polar-eps 0.0001

integrate verlet

mpoleterm only

polarizeterm

120 AMOEBA PLUGIN

A sample key file for PME multipole tests

parameters /home/user/tinker/params/amoebabio09

verbose

randomseed 123456789

neighbor-list

vdw-cutoff 12.0

ewald

ewald-cutoff 7.0

pme-grid 64 64 64

polar-eps 0.01

fft-package fftw

integrate verlet

mpoleterm only

polarizeterm

For the Generalized Kirkwood force, the following entries are needed:

parameters /home/user/tinker/params/amoebabio09

verbose

solvate GK

born-radius OBC

polar-eps 0.0001

integrate verlet

born-radius OBC

solvateterm only

polarizeterm

mpoleterm

For this test, the TINKER file ‘ksolv.f’ needs to have the following lines (~line 155 in TINKER

v5.1.09) in bold added to the subroutine ksolv():

 ….

 else if (solvtyp .eq. 'GK') then

AMOEBA PLUGIN 121

 call kgk

 call knp

 do i = 1, n

 aobc(i) = 1.00d0

 bobc(i) = 0.80d0

 gobc(i) = 4.85d0

 end do

 …

The entry ‘include 'atoms.i’ also needs to be added to the top of the file. These entries are

needed for the Born OBC calculation.

For the implicit solvent (‘solvate GK’ runs) test, the forces and energies will differ due to the

different treatments of the cavity term (see Section Error! Reference source not found.

above). With these options for the Generalized Kirkwood force, the test routine will remove

the cavity contribution from the TINKER and OpenMM forces/energy when performing the

comparisons between the two calculations.

To test the multipole force or the Generalized Kirkwood forces with direct polarization, add

the following line to the end of the above files:

polarization DIRECT

10.2.2.5 Turning off OpenMM / Reverting to TINKER routines

To use the TINKER routines, as opposed to the OpenMM plugin, to run a simulation, set

‘useOpenMM’ to .false. in dynamic.f.

10.2.3 Implementation of TINKER-OpenMM

Tinker-OpenMM allows the OpenMM plugin to be used to calculate the forces and energies

and perform the integration in the main molecular dynamics loop. The only significant

changes to the Tinker source code are made in the file dynamic.f for the setup and running

122 AMOEBA PLUGIN

of a molecular dynamics simulation. An added file, dynamic_openmm.c, contains the

interface C-code between Tinker and the OpenMM plugin.

TINKER-OpenMM allows the OpenMM plugin to be used to calculate the forces and

energies and perform the integration in the main molecular dynamics loop. The only

changes to the TINKER source code are made in the file dynamic.f for the setup and

running of a molecular dynamics simulation. An added file, dynamic_openmm.c, contains

the interface C-code between TINKER and the OpenMM plugin.

The flow of the molecular dynamics simulation using the OpenMM plugin is as follows:

1. The TINKER code is used to read the AMOEBA parameter file, the *.xyz

and *.key files. It then parses the command-line options.

2. The method map_common_blocks_to_c_data_structs() is called to map the

FORTRAN common blocks to the C data structures used in setting the

parameters used by the OpenMM plugin.

3. The routine openmm_validate() is called from dynamic.f before the

main loop. This routine checks that all required options and settings

obtained from the input in step (1) and common blocks in step (2) are

available in the plugin. If an option or setting is unsupported, the program

exits with an appropriate message. The routine openmm_validate() and

the other OpenMM interface methods are in the file dynamic_openmm.c.

4. openmm_init() is called to create the OpenMM System, Integrator and

Context objects. The System object contains the particle masses, the

constraints, and the AMOEBA force objects. The Integrator is either the

VerletIntegrator or the LangevinIntegrator and will contain the step size; for

the LangevinIntegrator, it will also include the temperature and collision

frequency. Note that pressure coupling is implemented via the OpenMM

MonteCarloBarostat class. When initializing the AMOEBA force objects, the

parameters obtained from the TINKER common blocks are converted to the

OpenMM units (kJ/nm).

AMOEBA PLUGIN 123

5. The routine openmm_take_steps() is called to take a specified number of

time steps.

6. openmm_update() is then called to retrieve the state

(energies/positions/velocities) and populate the appropriate TINKER data

structures. These values are converted from the OpenMM units of kJ/nm to

kcal/Å	 when populating the TINKER arrays.

7. Once the main loop has completed, the routine openmm_cleanup() is called

to delete the OpenMM objects and release resources being used on the GPU

board.

10.3 OpenMM AMOEBA Validation

OpenMM AMOEBA has been validated for 12 systems. The validation focused on

comparisons between the individual forces and energies using TINKER’s routines and the

plugin. The results for calmodulin are shown in Table 10.2. Comparisons for villin (596

particles), ubiquitin (1228 particles), crambin(642 particles), lysozyme(1961 particles), dhfr

(2489(implicit),23558 (explicit)), 1not (176) and boxes of water yielded similar results.

Smaller molecule system were also tested (alanine tetrapeptide, dialaline-D, dialaline-L,

ammonia). The relative difference for the potential energies was comparable or less than the

average relative difference for the forces.

124 AMOEBA PLUGIN

Force

Average

Relative

Difference

Maximum

Relative

Difference

Norm of Force w/

Maximum Relative

Difference

AmoebaHarmonicBond 9.532e-05 6.470e-02 1.792e-02

AmoebaHarmonicAngle 4.353e-05 4.887e-03 7.499e-02

AmoebaStretchBend 1.854e-05 3.294e-04 3.188e-02

AmoebaOutOfPlaneBend 5.536e-05 7.270e-03 2.846e-02

AmoebaPiTorsion 6.743e-05 5.362e-03 5.971e-03

AmoebaTorsion 4.441e-05 1.083e-02 1.252e-02

AmoebaTorsionTorsion 1.281e-06 3.048e-04 2.751e-01

AmoebaUreyBradley	 2.919e-‐06	 	 	 	 2.577e-‐04	 1.090e+00	

AmoebaVdw (no cutoff) 4.262e-06 1.801e-04 1.146e-02

AmoebaVdw (9 Å cutoff) 2.679e-03 1.325e-02 8.931e-02

AmoebaWcaDispersion 7.533e-07 1.064e-05 2.589e-02

AmoebaMultipole 1.541e-06 3.937e-05 1.105e+00

AmoebaKirkwood 5.086e-06 6.271e-05 3.308e-01

Table	 10.2:	 	 Comparison	 of	 forces	 computed	 by	 TINKER	 versus	 by	 OpenMM	
AMOEBA	 for	 calmodulin	 (2498	 particles)	

The drift for villin in implicit solvent was below 1.0e-02 kT/degrees-of-freedom/ns, showing

that energy is well-conserved.

11 Free Energy Plugin

The free energy plugin provides modified versions of NonbondedForce, GBSAOBCForce,

and GBVIForce that allow the interactions of a subset of particles with the rest of the system

to be attenuated. These modified Force classes (NonbondedSoftcoreForce,

GBSAOBCSoftcoreForce, and GBVISoftcoreForce) implement “soft-core” forms of their

corresponding standard OpenMM Force terms (described in detail below), and are therefore

suitable for use in “alchemical” free energy calculations in which particles are inserted,

removed, or transformed into other particle types in stages. Currently, the plugin only

supports the Reference and CUDA platforms. No OpenCL platform support is planned, as

equivalent capabilities can be obtained through use of the Custom*Force classes.

These modified Force classes all introduce an additional parameter λ that modulates the

interactions of a subset of particles, such that λ=0 eliminates the interactions while λ=1
recovers the same interactions as the corresponding unmodified standard Force terms. At

intermediate values, a “soft-core” form is used for the modulated interactions that “softens”

singularities and allows particles to overlap without generating numerical instabilities3. The

instabilities can be removed by first eliminating Coulomb interactions of the particles being

modified, and then eliminating Lennard-Jones interaction using a soft-core form of the

interaction potential to avoid the sampling issues and singularities for values of λ near zero

and particle-particle interactions with inter-particle separation r ≈ 0.

The NonbondedSoftcoreForce class implements a soft-core form of the Lennard-Jones

potential3:

E = 4ελ(1.0/0.5*(1-λ)2 + (r/σ)6]2 – 1.0/[0.5*(1-λ)2 + (r/σ)6])

126 FREE ENERGY PLUGIN

This Lennard-Jones lambda parameter is set on a per-particle basis by using calls to

addParticle() that have their argument list extended to take ‘softcoreLJLambda’ as the last

value; ‘softcoreLJLambda’ should be a scalar between 0 and 1. If ‘softcoreLJLambda’ is

omitted, the default value of ‘softcoreLJLambda’=1.0 will be used, recovering the standard

interaction potential of NonbondedForce. Nonbonded exceptions between particular pairs of

particles can also have their interactions modified by setting the ‘softcoreLJLambda’

parameter appended to the end of the argument list of ‘addException’. The

‘softcoreLJLambda’ value used in the interaction for a pair of particles will be the exception

value, if set, or the product of per-particle lambda values if no exception for this particle pair

has been defined. Currently, the NonbondedSoftcoreForce only supports NoCutoff,

CutoffNonPeriodic, and CutoffPeriodic nonbonded methods; support for PME and Ewald are

not planned.

The free energy plugin also includes modifications to the OBC and GB/VI implicit solvent

models to allow alchemical free energy calculations, available as GBSAOBCSoftcoreForce

and GBVISoftcoreForce, respectively. For the OBC model, the single-atom contributions to

the cavity energy term associated with solvating a neutral molecule are scaled by the atom’s

λ value. In addition, for both implicit solvent models, the contribution of particle j to the

calculation of the Born radius of particle i is scaled by the lambda value of particle j. To

fully eliminate the GB contributions of a set of particles, their charges must also be scaled to

zero. These methods also only support NoCutoff, CutoffNonPeriodic, and CutoffPeriodic

nonbonded interaction methods.

FREE ENERGY PLUGIN 127

The electrostatic interactions are modulated using the reaction-field method for the

CutoffNonPeriodic, and CutoffPeriodic methods. The distance cutoff used for calculating

the Born radii is a hard cutoff with no tapering of the contribution for separation distances

near the cutoff. For the GB/VI model, a quintic spline scaling method is the default option

for modulating the Born radii near a user-specified cutoff; a no-scaling option is also

available. Without the scaling, cases where the pairwise overlap approximation used in

calculating the Born volumetric integral breaks down and can lead to very large or infinite

values of the Born radii; the scaling method sets an upper limit for the Born radii and the

application of the quintic spline for Born radii near the cutoff insures the radii and first

derivatives are continuous.

An example illustrating the use of NonbondedSoftcoreForce for computing the chemical

potential of argon is provided in examples/argon-chemical-potential.py, making use of the

Python wrappers. The System is created much as a standard system is, except a

NonbondedSoftcoreForce replaces the standard NonbondedForce:

 force = NonbondedSoftcoreForce()

 force.setNonbondedMethod(NonbondedForce.CutoffPeriodic)

 force.setCutoffDistance(cutoff)

 for particle_index in range(nparticles):

 system.addParticle(mass)

 if (particle_index == 0):

 # Add alchemically-modified particle.

 force.addParticle(charge, sigma, epsilon, lambda_value)

 else:

 # Add normal particle.

 force.addParticle(charge, sigma, epsilon)

128 FREE ENERGY PLUGIN

More details of the calculation, including the use of the multistate Bennett acceptance ratio

(MBAR) method4 to analyze the data to extract a free energy estimate, are given in the

example.

12 Ring Polymer Molecular

Dynamics (RPMD) Plugin

Ring Polymer Molecular Dynamics (RPMD) provides an efficient approach to include

nuclear quantum effects in molecular simulations.5 When used to calculate static

equilibrium properties, RPMD reduces to path integral molecular dynamics and gives an

exact description of the effect of quantum fluctuations for a given potential energy model.6

For dynamical properties RPMD is no longer exact but has shown to be a good

approximation in many cases.

For a system with a classical potential energy E(q), the RPMD Hamiltonian is given by

This Hamiltonian resembles that of a system of classical ring polymers where different

copies of the system are connected by harmonic springs. Hence each copy of the classical

system is commonly referred to as a “bead”. The spread of the ring polymer representing

each particle is directly related to its De Broglie thermal wavelength (uncertainty in its

position).

RPMD calculations must be converged with respect to the number n of beads used. Each

bead is evolved at the effective temperature nT, where T is the temperature for which

properties are required. The number of beads needed to converge a calculation can be

estimated using7

130 RING POLYMER MOLECULAR DYNAMICS (RPMD) PLUGIN

where ωmax is the highest frequency in the problem. For example, for flexible liquid water

the highest frequency is the OH stretch at around 3000 cm-1, so around 24 to 32 beads are

needed depending on the accuracy required. For rigid water where the highest frequency is

only around 1000 cm-1, only 6 beads are typically needed. Due to the replication needed of

the classical system, the extra cost of the calculation compared to a classical simulation

increases linearly with the number of beads used.

Due to the stiff spring terms between the beads, NVE RPMD trajectories can suffer from

ergodicity problems and hence thermostatting is highly recommended, especially when

dynamical properties are not required.8 The thermostat implemented here is the path

integral Langevin equation (PILE) approach.9 This method couples an optimal white noise

Langevin thermostat to the normal modes of each polymer, leaving only one parameter to be

chosen by the user which controls the friction applied to the center of mass of each ring

polymer. A good choice for this is to use a value similar to that used in a classical calculation

of the same system.

Part II

Theory Guide

13 The Theory Behind

OpenMM: an Introduction

13.1 Overview

This guide describes the mathematical theory behind OpenMM. For each computational

class, it describes what computations the class performs and how it should be used. This

serves two purposes. If you are using OpenMM within an application, this guide teaches you

how to use it correctly. If you are implementing the OpenMM API for a new Platform, it

teaches you how to correctly implement the required kernels.

On the other hand, many details are intentionally left unspecified. Any behavior that is not

specified either in this guide or in the API documentation is left up to the Platform, and may

be implemented in different ways by different Platforms. For example, an Integrator is

required to produce a trajectory that satisfies constraints to within the user specified

tolerance, but the algorithm used to enforce those constraints is left up to the Platform.

Similarly, this guide provides the functional form of each Force, but does not specify what

level of numerical precision it must be calculated to.

This is an essential feature of the design of OpenMM, because it allows the API to be

implemented efficiently on a wide variety of hardware and software platforms, using

whatever methods are most appropriate for each platform. On the other hand, it means that

a single program may produce meaningfully different results depending on which Platform it

uses. For example, different constraint algorithms may have different regions of

convergence, and thus a time step that is stable on one platform may be unstable on a

different one. It is essential that you validate your simulation methodology on each Platform

you intend to use, and do not assume that good results on one Platform will guarantee good

results on another Platform when using identical parameters.

THE THEORY BEHIND OPENMM: AN INTRODUCTION 133

13.2 Units

There are several different sets of units widely used in molecular simulations. For example,

energies may be measured in kcal/mol or kJ/mol, distances may be in Angstroms or nm,

and angles may be in degrees or radians. OpenMM uses the following units everywhere.

Quantity Units

distance nm

time ps

mass atomic mass units

charge proton charge

temperature Kelvin

angle radians

energy kJ/mol

Table	 13.1:	 	 Units	 used	 within	 OpenMM	

These units have the important feature that they form an internally consistent set. For

example, a force always has the same units (kJ/mol/nm) whether it is calculated as the

gradient of an energy or as the product of a mass and an acceleration. This is not true in

some other widely used unit systems, such as those that express energy in kcal/mol.

The header file Units.h contains predefined constants for converting between the OpenMM

units and some other common units. For example, if your application expresses distances in

Angstroms, you should multiply them by OpenMM::NmPerAngstrom before passing them to

OpenMM, and positions calculated by OpenMM should be multiplied by

OpenMM::AngstromsPerNm before passing them back to your application.

14 Standard Forces

The following classes implement standard force field terms that are widely used in molecular

simulations.

14.1 HarmonicBondForce

Each harmonic bond is represented by an energy term of the form

where x is the distance between the two particles, x0 is the equilibrium distance, and k is the

force constant. This produces a force of magnitude k(x-x0).

Be aware that some force fields define their harmonic bond parameters in a slightly different

way: E = k´(x-x0)2, leading to a force of magnitude 2k´(x-x0). Comparing these two forms,

you can see that k = 2k´. Be sure to check which form a particular force field uses, and if

necessary multiply the force constant by 2.

14.2 HarmonicAngleForce

Each harmonic angle is represented by an energy term of the form

where θ is the angle formed by the three particles, θ0 is the equilibrium angle, and k is the

force constant.

STANDARD FORCES 135

As with HarmonicBondForce, be aware that some force fields define their harmonic angle

parameters as E = k´(θ-θ0)2. Be sure to check which form a particular force field uses, and if

necessary multiply the force constant by 2.

14.3 PeriodicTorsionForce

Each torsion is represented by an energy term of the form

where θ is the dihedral angle formed by the four particles, θ0 is the equilibrium angle, n is

the periodicity, and k is the force constant.

14.4 RBTorsionForce

Each torsion is represented by an energy term of the form

where φ is the dihedral angle formed by the four particles and C0 through C5 are constant

coefficients.

For reason of convention, PeriodicTorsionForce and RBTorsonForce define the torsion angle

differently. θ is zero when the first and last particles are on the same side of the bond formed

by the middle two particles (the cis configuration), whereas φ is zero when they are on

opposite sides (the trans configuration). This means that θ = φ - π.

14.5 CMAPTorsionForce

Each torsion pair is represented by an energy term of the form

136 STANDARD FORCES

where θ1 and θ2 are the two dihedral angles coupled by the term, and f(x,y) is defined by a

user supplied grid of tabulated values. A natural cubic spline surface is fit through the

tabulated values, then evaluated to determine the energy for arbitrary (θ1, θ2) pairs.

14.6 NonbondedForce

14.6.1 Lennard-Jones Interaction

The Lennard-Jones interaction between each pair of particles is represented by an energy

term of the form

where r is the distance between the two particles, σ is the distance at which the energy

equals zero, and ε sets the strength of the interaction. If the NonbondedMethod in use is

anything other than NoCutoff and r is greater than the cutoff distance, the energy and force

are both set to zero. Because the interaction decreases very quickly with distance, the cutoff

usually has little effect on the accuracy of simulations.

When an exception has been added for a pair of particles, σ and ε are the parameters

specified by the exception. Otherwise they are determined from the parameters of the

individual particles using the Lorentz-Bertelot combining rule:

When using periodic boundary conditions, NonbondedForce can optionally add a term

(known as a long range dispersion correction) to the energy that approximately represents

the contribution from all interactions beyond the cutoff distance:10

STANDARD FORCES 137

where N is the number of particles in the system, V is the volume of the periodic box, rc is

the cutoff distance, σij and εij are the interaction parameters between particle i and particle j,

and 〈...〉 represents an average over all pairs of particles in the system. The long range

dispersion correction is primarily useful when running simulations at constant pressure,

since it produces a more accurate variation in system energy with respect to volume.

The Lennard-Jones interaction is often parameterized in two other equivalent ways. One is

where rmin (sometimes known as dmin; this is not a radius) is the center-to-center distance at

which the energy is minimum. It is related to σ by

In turn, rmin is related to the van der Waals radius by rmin = 2 rvdw.

Another common form is

The coefficients A and B are related to σ and ε by

138 STANDARD FORCES

14.6.2 Coulomb Interaction Without Cutoff

The form of the Coulomb interaction between each pair of particles depends on the

NonbondedMethod in use. For NoCutoff, it is given by

where q1 and q2 are the charges of the two particles, and r is the distance between them.

14.6.3 Coulomb Interaction With Cutoff

For CutoffNonPeriodic or CutoffPeriodic, it is modified using the reaction field

approximation. This is derived by assuming everything beyond the cutoff distance is a

solvent with a uniform dielectric constant.11

where rcutoff is the cutoff distance and εsolvent is the dielectric constant of the solvent. In the

limit εsolvent >> 1, this causes the force to go to zero at the cutoff.

14.6.4 Coulomb Interaction With Ewald Summation

For Ewald, the total Coulomb energy is the sum of three terms: the direct space sum, the

reciprocal space sum, and the self-energy term.12

STANDARD FORCES 139

In the above expressions, the indices i and j run over all particles, n = (n1, n2, n3) runs over

all copies of the periodic cell, and k = (k1, k2, k3) runs over all integer wave vectors from (-

kmax, -kmax, -kmax) to (kmax, kmax, kmax) excluding (0, 0, 0). ri is the position of particle i, while

rij is the distance between particles i and j. V is the volume of the periodic cell, and α is an

internal parameter.

In the direct space sum, all pairs that are further apart than the cutoff distance are ignored.

Because the cutoff is required to be less than half the width of the periodic cell, the number

of terms in this sum is never greater than the square of the number of particles.

The error made by applying the direct space cutoff depends on the magnitude of erfc(αrcutoff).

Similarly, the error made in the reciprocal space sum by ignoring wave numbers beyond kmax

depends on the magnitude of exp(-(πkmax/α)2). By changing α, one can decrease the error in

either term while increasing the error in the other one.

Instead of having the user specify α and kmax, NonbondedForce instead asks the user to

choose an error tolerance δ. It then calculates α as

Finally, it estimates the error in the reciprocal space sum as

140 STANDARD FORCES

where d is the width of the periodic box, and selects the smallest value for kmax which gives

error < δ. (If the box is not square, kmax will have a different value along each axis.)

This means that the accuracy of the calculation is determined by δ. rcutoff does not affect the

accuracy of the result, but does affect the speed of the calculation by changing the relative

costs of the direct space and reciprocal space sums. You therefore should test different

cutoffs to find the value that gives best performance; this will in general vary both with the

size of the system and with the Platform being used for the calculation. When the optimal

cutoff is used for every simulation, the overall cost of evaluating the nonbonded forces scales

as O(N3/2) in the number of particles.

Be aware that the error tolerance δ is not a rigorous upper bound on the errors. The

formulas given above are empirically found to produce average relative errors in the forces

that are less than or similar to δ across a variety of systems and parameter values, but no

guarantees are made. It is important to validate your own simulations, and identify

parameter values that produce acceptable accuracy for each system.

14.6.5 Coulomb Interaction With Particle Mesh Ewald

The Particle Mesh Ewald (PME) algorithm13 is similar to Ewald summation, but instead of

calculating the reciprocal space sum directly, it first distributes the particle charges onto

nodes of a rectangular mesh using 5th order B-splines. By using a Fast Fourier Transform,

the sum can then be computed very quickly, giving performance that scales as O(N log N) in

the number of particles (assuming the volume of the periodic box is proportional to the

number of particles).

As with Ewald summation, the user specifies the direct space cutoff rcutoff and error tolerance

δ. NonbondedForce then selects α as

and the number of nodes in the mesh along each dimension as

STANDARD FORCES 141

where d is the width of the periodic box along that dimension. (Note that some Platforms

may choose to use a larger value of nmesh than that given by this equation. For example,

some FFT implementations require the mesh size to be a multiple of certain small prime

numbers, so a Platform might round it up to the nearest permitted value. It is guaranteed

that nmesh will never be smaller than the value given above.)

The comments in the previous section regarding the interpretation of δ for Ewald

summation also apply to PME, but even more so. The behavior of the error for PME is more

complicated than for simple Ewald summation, and while the above formulas will usually

produce an average relative error in the forces less than or similar to δ, this is not a rigorous

guarantee. PME is also more sensitive to numerical round-off error than Ewald summation.

For Platforms that do calculations in single precision, making δ too small (typically below

about 5⋅10-5) can actually cause the error to increase.

14.7 GBSAOBCForce

14.7.1 Generalized Born Term

GBSAOBCForce consists of two energy terms: a Generalized Born Approximation term to

represent the electrostatic interaction between the solute and solvent, and a surface area

term to represent the free energy cost of solvating a neutral molecule. The Generalized Born

energy is given by14

where the indices i and j run over all particles, εsolute and εsolvent are the dielectric constants of

the solute and solvent respectively, qi is the charge of particle i, and dij is the distance

between particles i and j. fGB(dij, Ri, Rj) is defined as

142 STANDARD FORCES

Ri is the Born radius of particle i, which calculated as

where α, β, and γ are the GBOBCII parameters α = 1, β = 0.8, and γ = 4.85. ρi is the adjusted

atomic radius of particle i, which is calculated from the atomic radius ri as ρi = ri-0.009 nm.

Ψi is calculated as an integral over the van der Waals spheres of all particles outside particle

i:

where θ(r) is a step function that excludes the interior of particle i from the integral.

14.7.2 Surface Area Term

The surface area term is given by15-16

where ri is the atomic radius of particle i, Ri is its Born radius, and rsolvent is the solvent

radius, which is taken to be 0.14 nm.

14.8 GBVIForce

STANDARD FORCES 143

The GBVI force is an implicit solvent force based on an algorithm developed by Paul

Labute.17 The GBVI force is currently undergoing testing to validate that it is correctly

implementing the algorithm. The GBVI energy is given by Equation 2 of the referenced

paper:

where the indices i and j run over all n particles, εsolute and εsolvent are the dielectric constants

of the solute and solvent respectively, qi is the charge of particle i, dij is the distance between

particles i and j, ri are the input particle radii, and the γi are adjustable parameters. fGB(dij, Ri,

Rj) is defined as above (Section 10.6) for the GBSAOBCForce. The Born radii, Ri, are defined

by the equation

where V(d,r,S) is given by

and

The Si are derived from the covalent topology of the solute:

144 STANDARD FORCES

and

where dij is the fixed covalent bond length between particles i and j, and the sum in the

calculation of the νi is over the particles j covalently bonded to particle i.

14.9 AndersenThermostat

AndersenThermostat couples the system to a heat bath by randomly selecting a subset of

particles at the start of each time step, then setting their velocities to new values chosen from

a Boltzmann distribution. This represents the effect of random collisions between particles

in the system and particles in the heat bath.18

The probability that a given particle will experience a collision in a given time step is

where f is the collision frequency and Δt is the step size. Each component of its velocity is

then set to

where T is the thermostat temperature, m is the particle mass, and R is a random number

chosen from a normal distribution with mean of zero and variance of one.

STANDARD FORCES 145

14.10 MonteCarloBarostat

MonteCarloBarostat models the effect of constant pressure by allowing the size of the

periodic box to vary with time.19-20 At regular intervals, it attempts a Monte Carlo step by

scaling the box vectors and the coordinates of each molecule’s center by a factor s. The scale

factor s is chosen to change the volume of the periodic box from V to V+δV:

The change in volume is chosen randomly as

where A is a scale factor and r is a random number uniformly distributed between -1 and 1.

The step is accepted or rejected based on the weight function

where ΔE is the change in potential energy resulting from the step, P is the system pressure,

N is the number of molecules in the system, kB is Boltzmann’s constant, and T is the system

temperature. In particular, if ΔW ≤ 0 the step is always accepted. If ΔW > 0, the step is

accepted with probability exp(-ΔW/kBT).

This algorithm tends to be more efficient than deterministic barostats such as the Berendsen

or Parrinello-Rahman algorithms, since it does not require an expensive virial calculation at

every time step. Each Monte Carlo step involves two energy evaluations, but this can be

done much less often than every time step. It also does not require you to specify the

compressibility of the system, which usually is not known in advance.

The scale factor A that determines the size of the steps is chosen automatically to produce an

acceptance rate of approximately 50%. It is initially set to 1% of the periodic box volume.

146 STANDARD FORCES

The acceptance rate is then monitored, and if it varies too much from 50% then A is

modified accordingly.

Each Monte Carlo step modifies particle positions by scaling the centroid of each molecule,

then applying the resulting displacement to each particle in the molecule. This ensures that

each molecule is translated as a unit, so bond lengths and constrained distances are

unaffected.

MonteCarloBarostat assumes the simulation is being run at constant temperature as well as

pressure, and the simulation temperature affects the step acceptance probability. It does not

itself perform temperature regulation, however. You must use another mechanism along

with it to maintain the temperature, such as LangevinIntegrator or AndersenThermostat.

14.11 CMMotionRemover

CMMotionRemover prevents the system from drifting in space by periodically removing all

center of mass motion. At the start of every n’th time step (where n is set by the user), it

calculates the total center of mass velocity of the system:

where mi and vi are the mass and velocity of particle i. It then subtracts vCM from the

velocity of every particle.

15 Custom Forces

In addition to the standard forces described in the previous chapter, OpenMM provides a

number of “custom” force classes. These classes provide detailed control over the

mathematical form of the force by allowing the user to specify one or more arbitrary

algebraic expressions. The details of how to write these custom expressions are described in

section 15.8.

15.1 CustomBondForce

CustomBondForce is similar to HarmonicBondForce in that it represents an interaction

between certain pairs of particles as a function of the distance between them, but it allows

the precise form of the interaction to be specified by the user. That is, the interaction energy

of each bond is given by

where f(r) is a user defined mathematical expression.

In addition to depending on the inter-particle distance r, the energy may also depend on an

arbitrary set of user defined parameters. Parameters may be specified in two ways:

Global parameters have a single, fixed value. The value is stored in the Context, and may be

changed in the middle of a simulation.

Per-bond parameters are defined by specifying a value for each bond. The values are part of

the force definition, and therefore cannot change during a simulation.

148 CUSTOM FORCES

15.2 CustomAngleForce

CustomAngleForce is similar to HarmonicAngleForce in that it represents an interaction

between sets of three particles as a function of the angle between them, but it allows the

precise form of the interaction to be specified by the user. That is, the interaction energy of

each angle is given by

where f(θ) is a user defined mathematical expression.

In addition to depending on the angle θ, the energy may also depend on an arbitrary set of

user defined parameters. Parameters may be specified in two ways:

Global parameters have a single, fixed value. The value is stored in the Context, and may be

changed in the middle of a simulation.

Per-angle parameters are defined by specifying a value for each angle. The values are part of

the force definition, and therefore cannot change during a simulation.

15.3 CustomTorsionForce

CustomTorsionForce is similar to PeriodicTorsionForce in that it represents an interaction

between sets of four particles as a function of the dihedral angle between them, but it allows

the precise form of the interaction to be specified by the user. That is, the interaction energy

of each angle is given by

where f(θ) is a user defined mathematical expression. The angle θ is guaranteed to be in the

range [-π, π]. Like PeriodicTorsionForce, it is defined to be zero when the first and last

particles are on the same side of the bond formed by the middle two particles (the cis

configuration).

CUSTOM FORCES 149

In addition to depending on the angle θ, the energy may also depend on an arbitrary set of

user defined parameters. Parameters may be specified in two ways:

Global parameters have a single, fixed value. The value is stored in the Context, and may be

changed in the middle of a simulation.

Per-torsion parameters are defined by specifying a value for each torsion. The values are

part of the force definition, and therefore cannot change during a simulation.

15.4 CustomNonbondedForce

CustomNonbondedForce is similar to NonbondedForce in that it represents a pairwise

interaction between all particles in the System, but it allows the precise form of the

interaction to be specified by the user. That is, the interaction energy between each pair of

particles is given by

where f(r) is a user defined mathematical expression.

In addition to depending on the inter-particle distance r, the energy may also depend on an

arbitrary set of user defined parameters. Parameters may be specified in two ways:

Global parameters have a single, fixed value. The value is stored in the Context, and may be

changed in the middle of a simulation.

Per-particle parameters are defined by specifying a value for each particle. The values are

part of the force definition, and therefore cannot change during a simulation.

150 CUSTOM FORCES

15.5 CustomExternalForce

CustomExternalForce represents a force that is applied independently to each particle as a

function of its position. That is, the energy of each particle is given by

where f(x, y, z) is a user defined mathematical expression.

In addition to depending on the particle’s (x, y, z) coordinates, the energy may also depend

on an arbitrary set of user defined parameters. Parameters may be specified in two ways:

Global parameters have a single, fixed value. The value is stored in the Context, and may be

changed in the middle of a simulation.

Per-particle parameters are defined by specifying a value for each particle. The values are

part of the force definition, and therefore cannot change during a simulation.

15.6 CustomGBForce

CustomGBForce implements complex, multiple stage nonbonded interactions between

particles. It is designed primarily for implementing Generalized Born implicit solvation

models, although it is not strictly limited to that purpose.

The interaction is specified as a series of computations, each defined by an arbitrary

algebraic expression. These computations consist of some number of per-particle computed

values, followed by one or more energy terms. A computed value is a scalar value that is

computed for each particle in the system. It may depend on an arbitrary set of global and

per-particle parameters, and well as on other computed values that have been calculated

before it. Once all computed values have been calculated, the energy terms and their

derivatives are evaluated to determine the system energy and particle forces. The energy

terms may depend on global parameters, per-particle parameters, and per-particle

computed values.

CUSTOM FORCES 151

Computed values can be calculated in two different ways:

• Single particle values are calculated by evaluating a user defined expression for each

particle:

where f(...) may depend only on properties of particle i (its coordinates and

parameters, as well as other computed values that have already been calculated).

• Particle pair values are calculated as a sum over pairs of particles:

where the sum is over all other particles in the System, and f(r, ...) is a function of the

distance r between particles i and j, as well as their parameters and computed values.

Energy terms may similarly be calculated per-particle or per-particle-pair.

• Single particle energy terms are calculated by evaluating a user defined expression

for each particle:

where f(...) may depend only on properties of that particle (its coordinates,

parameters, and computed values).

• Particle pair energy terms are calculated by evaluating a user defined expression

once for every pair of particles in the System:

152 CUSTOM FORCES

where the sum is over all particle pairs i < j, and f(r, ...) is a function of the distance r

between particles i and j, as well as their parameters and computed values.

Note that energy terms are assumed to be symmetric with respect to the two interacting

particles, and therefore are evaluated only once per pair. In contrast, expressions for

computed values need not be symmetric and therefore are calculated twice for each pair:

once when calculating the value for the first particle, and again when calculating the value

for the second particle.

Be aware that, although this class is extremely general in the computations it can define,

particular Platforms may only support more restricted types of computations. In particular,

all currently existing Platforms require that the first computed value must be a particle pair

computation, and all computed values after the first must be single particle computations.

This is sufficient for most Generalized Born models, but might not permit some other types

of calculations to be implemented.

15.7 CustomHbondForce

CustomHbondForce supports a wide variety of energy functions used to represent hydrogen

bonding. It computes interactions between "donor" particle groups and "acceptor" particle

groups, where each group may include up to three particles. Typically a donor group

consists of a hydrogen atom and the atoms it is bonded to, and an acceptor group consists of

a negatively charged atom and the atoms it is bonded to. The interaction energy between

each donor group and each acceptor group is given by

where f(...) is a user defined mathematical expression. It may depend on an arbitrary set of

distances {ri}, angles {θi}, and dihedral angles {φi}.

Each distance, angle, or dihedral is defined by specifying a sequence of particles chosen from

the interacting donor and acceptor groups (up to six atoms to choose from, since each group

may contain up to three atoms). A distance variable is defined by two particles, and equals

CUSTOM FORCES 153

the distance between them. An angle variable is defined by three particles, and equals the

angle between them. A dihedral variable is defined by four particles, and equals the angle

between the first and last particles about the axis formed by the middle two particles. It is

equal to zero when the first and last particles are on the same side of the axis.

In addition to depending on distances, angles, and dihedrals, the energy may also depend on

an arbitrary set of user defined parameters. Parameters may be specified in three ways:

Global parameters have a single, fixed value. The value is stored in the Context, and may be

changed in the middle of a simulation.

Per-donor parameters are defined by specifying a value for each donor group. The values

are part of the force definition, and therefore cannot change during a simulation.

Per-acceptor parameters are defined by specifying a value for each acceptor group. The

values are part of the force definition, and therefore cannot change during a simulation.

15.8 Writing Custom Expressions

The custom forces described in this chapter involve user defined algebraic expressions.

These expressions are specified as character strings, and may involve a variety of standard

operators and mathematical functions.

The following operators are supported: + (add), - (subtract), * (multiply), / (divide), and ^

(power). Parentheses “(“and “)” may be used for grouping.

The following standard functions are supported: sqrt, exp, log, sin, cos, sec, csc, tan, cot,

asin, acos, atan, sinh, cosh, tanh, erf, erfc, min, max, abs, step. step(x) = 0 if x < 0, 1

otherwise. Some custom forces allow additional functions to be defined from tabulated

values.

Numbers may be given in either decimal or exponential form. All of the following are valid

numbers: 5, -3.1, 1e6, and 3.12e-2.

154 CUSTOM FORCES

The variables that may appear in expressions are specified in the API documentation for

each force class. In addition, an expression may be followed by definitions for intermediate

values that appear in the expression. A semicolon “;” is used as a delimiter between value

definitions. For example, the expression

a^2+a*b+b^2; a=a1+a2; b=b1+b2

is exactly equivalent to

(a1+a2)^2+(a1+a2)*(b1+b2)+(b1+b2)^2

The definition of an intermediate value may itself involve other intermediate values. All uses

of a value must appear before that value’s definition.

16 Integrators

16.1 VerletIntegrator

VerletIntegrator implements the leap-frog Verlet integration method. The positions and

velocities stored in the context are offset from each other by half a time step. In each step,

they are updated as follows:

where vi is the velocity of particle i, ri is its position, fi is the force acting on it, mi is its mass,

and Δt is the time step.

Because the positions are always half a time step later than the velocities, care must be used

when calculating the energy of the system. In particular, the potential energy and kinetic

energy in a State correspond to different times, and you cannot simply add them to get the

total energy of the system. Instead, it is better to retrieve States after two successive time

steps, calculate the on-step velocities as

then use those velocities to calculate the kinetic energy at time t.

16.2 LangevinIntegator

LangevinIntegator simulates a system in contact with a heat bath by integrating the

Langevin equation of motion:

156 INTEGRATORS

where vi is the velocity of particle i, fi is the force acting on it, mi is its mass, γ is the friction

coefficient, and Ri is an uncorrelated random force whose components are chosen from a

normal distribution with mean zero and variance 2miγkBT, where T is the temperature of the

heat bath.

The integration is done using a leap-frog method similar to VerletIntegrator.21 The same

comments about the offset between positions and velocities apply to this integrator as to that

one.

16.3 BrownianIntegrator

BrownianIntegrator simulates a system in contact with a heat bath by integrating the

Brownian equation of motion:

where ri is the position of particle i, fi is the force acting on it, γ is the friction coefficient, and

Ri is an uncorrelated random force whose components are chosen from a normal

distribution with mean zero and variance 2kBT/miγ, where T is the temperature of the heat

bath.

The Brownian equation of motion is derived from the Langevin equation of motion in the

limit of large γ. In that case, the velocity of a particle is determined entirely by the

instantaneous force acting on it, and kinetic energy ceases to have much meaning, since it

disappears as soon as the applied force is removed.

INTEGRATORS 157

16.4 VariableVerletIntegrator

This is very similar to VerletIntegrator, but instead of using the same step size for every time

step, it continuously adjusts the step size to keep the integration error below a user specified

tolerance. It compares the positions generated by Verlet integration with those that would

be generated by an explicit Euler integrator, and takes the difference between them as an

estimate of the integration error:

where fi is the force acting on particle i and mi is its mass. (In practice, the error made by

the Euler integrator is usually larger than that made by the Verlet integrator, so this tends to

overestimate the true error. Even so, it can provide a useful mechanism for step size

control.)

It then selects the value of Δt that makes the error exactly equal the specified error tolerance:

where δ is the error tolerance. This is the largest step that may be taken consistent with the

user specified accuracy requirement.

(Note that the integrator may sometimes choose to use a smaller value for Δt than given

above. For example, it might restrict how much the step size can grow from one step to the

next, or keep the step size constant rather than increasing it by a very small amount. This

behavior is not specified and may vary between Platforms. It is required, however, that Δt

never be larger than the value given above.)

A variable time step integrator is generally superior to a fixed time step one in both stability

and efficiency. It can take larger steps on average, but will automatically reduce the step size

158 INTEGRATORS

to preserve accuracy and avoid instability when unusually large forces occur. Conversely,

when each uses the same step size on average, the variable time step one will usually be

more accurate since the time steps are concentrated in the most difficult areas of the

trajectory.

Unlike a fixed step size Verlet integrator, variable step size Verlet is not symplectic. This

means that for a given average step size, it will not conserve energy as precisely over long

time periods, even though each local region of the trajectory is more accurate. For this

reason, it is most appropriate when precise energy conservation is not important, such as

when simulating a system at constant temperature. For constant energy simulations that

must maintain the energy accurately over long time periods, the fixed step size Verlet may be

more appropriate.

16.5 VariableLangevinIntegrator

This is similar to LangevinIntegrator, but it continuously adjusts the step size using the same

method as VariableVerletIntegrator. It is usually preferred over the fixed step size Langevin

integrator for the reasons given above. Furthermore, because Langevin dynamics involves a

random force, it can never be symplectic and therefore the fixed step size Verlet integrator’s

advantages do not apply to the Langevin integrator.

17 Other Tools

17.1 LocalEnergyMinimizer

This provides an implementation of the L-BFGS optimization algorithm.22 Given a Context

specifying initial particle positions, it searches for a nearby set of positions that represent a

local minimum of the potential energy. Distance constraints are enforced during

minimization by adding a harmonic restraining force to the potential function. The strength

of the restraining force is steadily increased until the minimum energy configuration

satisfies all constraints to within the tolerance specified by the Context's Integrator.

17.2 XMLSerializer

This provides the ability to “serialize” a System object to a portable XML format, then

reconstruct it again later. The XML data contains a complete copy of the entire system

definition, including all Forces that have been added to it.

Here are some examples of uses for this class:

1. A model building utility could generate a System in memory, then serialize it to a file

on disk. Other programs that perform simulation or analysis could then reconstruct

the model by simply loading the XML file.

2. When running simulations on a cluster, all model construction could be done on a

single node. The Systems could then be encoded as XML, allowing them to be easily

transmitted to other nodes.

XMLSerializer is a templatized class that, in principle, can be used to serialize any type of

object. At present, however, System is the only class that is supported.

18 Bibliography

1. Ren, P.; Ponder, J. W., A Consistent Treatment of Inter- and Intramolecular
Polarization in Molecular Mechanics Calculations. Journal of Computational Chemistry
2002, 23, 1497-1506.
2. Ren, P.; Ponder, J. W., Polarizable Atomic Multipole Water Model for Molecular
Mechanics Simulation. Journal of Physical Chemistry B 2003, 107, 5933-5947.
3. Shirts, M. R.; Pande, V. S., Solvation free energies of amino acid side chain analogs
for common molecular mechanics water models. Journal of Chemical Physics 2005, 132,
134508.
4. Shirts, M. R.; Chodera, J. D., Statistically optimal analysis of samples from multiple
equilibrium states. Journal of Chemical Physics 2008, 129, 124105.
5. Craig, I. R.; Manolopoulos, D. E., Quantum statistics and classical mechanics: Real
time correlation functions from ring polymer molecular dynamics. Journal of Chemical
Physics 2004, 121, 3368-3373.
6. Parrinello, M.; Rahman, A., Study of an F center in molten KCl. Journal of Chemical
Physics 1984, 80 (2), 860-867.
7. Markland, T. E.; Manolopoulos, D. E., An efficient ring polymer contraction scheme
for imaginary time path integral simulations. Journal of Chemical Physics 2008, 129 (2).
8. Hall, R. W.; Berne, B. J., Nonergodicity in path integral molecular dynamics. Journal
of Chemical Physics 1984, 81 (8).
9. Ceriotti, M.; Parrinello, M.; Markland, T. E.; Manolopoulos, D. E., Efficient
stochastic thermostatting of path integral molecular dynamics. Journal of Chemical Physics
2010, 133 (12).
10. Shirts, M. R.; Mobley, D. L.; Chodera, J. D.; Pande, V. S., Accurate and Efficient
Corrections for Missing Dispersion Interactions in Molecular
Simulations. Journal of Physical Chemistry B 2007, 111, 13052-13063.
11. Tironi, I. G.; Sperb, R.; Smith, P. E.; van Gunsteren, W. F., A generalized reaction
field method for molecular dynamics simulations. Journal of Chemical Physics 1995, 102
(13), 5451-5459.
12. Toukmaji, A. Y.; Board Jr, J. A., Ewald summation techniques in perspective: a
survey. Computer Physics Communications 1996, 95, 73-92.
13. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G., A
smooth particle mesh Ewald method. Journal of Chemical Physics 1995, 103 (19), 8577-
8593.
14. Onufriev, A.; Bashford, D.; Case, D. A., Exploring protein native states and large-
scale conformational changes with a modified generalized born model. Proteins 2004, 55
(22), 383-394.
15. Schaefer, M.; Bartels, C.; Karplus, M., Solution conformations and thermodynamics
of structured peptides: molecular dynamics simulation with an implicit solvation model.
Journal of Molecular Biology 1998, 284 (3), 835-848.
16. Ponder, J., Personal communication. This expression differs slightly from that given
by Schaefer et al. This form was found to give a better correlation with surface area. ed.

BIBLIOGRAPHY 161

17. Labute, P., The generalized Born/volume integral implicit solvent model: Estimation
of the free energy of hydration using London dispersion instead of atomic surface area.
Journal of Computational Chemistry 2008, 29 (10), 1693-1698.
18. Andersen, H. C., Molecular dynamics simulations at constant pressure and/or
temperature. Journal of Chemical Physics 1980, 72 (4), 2384-2393.
19. Chow, K.-H.; Ferguson, D. M., Isothermal-isobaric molecular dynamics simulations
with Monte Carlo volume sampling. Computer Physics Communications 1995, 91, 283-289.
20. Åqvist, J.; Wennerström, P.; Nervall, M.; Bjelic, S.; Brandsdal, B. O., Molecular
dynamics simulations of water and biomolecules with a Monte Carlo constant pressure
algorithm. Chemical Physics Letters 2004, 384, 288-294.
21. Izaguirre, J. A.; Sweet, C. R.; Pande, V. S., Multiscale dynamics of macromolecules
using Normal Mode Langevin. Pacific Symposium on Biocomputing 2010, 15, 240-251.
22. Liu, D. C.; Nocedal, J., On the Limited Memory BFGS Method For Large Scale
Optimization. Mathematical Programming 1989, 45, 503-528.

